[スポンサーリンク]

化学者のつぶやき

アルキルラジカルをトリフルオロメチル化する銅錯体

[スポンサーリンク]

中国科学院 上海有機化学研究所のChaozhong Liらは、アルキルハライドから系中生成させた炭素ラジカルをトリフルオロメチル銅錯体でトラップすることにより、sp3炭素上のトリフルオロメチル化を室温・水系溶媒中で進行させることに成功した。

“Trifluoromethylation of Alkyl Radicals in Aqueous Solution”
Shen, H.; Liu, Z.; Zhang, P.; Tan, X.; Zhang, Z.; Li, C.* J. Am. Chem. Soc. 2017, 139, 9843-9846. DOI: 10.1021/jacs.7b06044

問題設定

トリフルオロメチル基の導入は化合物の脂溶性、浸透性、代謝安定性を高めるため、医農薬領域で重要視されている。とりわけC(sp3)-CF3結合形成に有効な手法は以下の3つに大別される。
(a) 求核的CF3:TMSCF3 (Ruppert-Prakash試薬)、FSO2CF2CO2Me (Chen試薬)、(Ph3P)3CuCF3 (Grushin試薬)
(b) 求電子的CF3:S(IV)-CF3(梅本試薬)、I(III)-CF3(Togni試薬)、S(VI)-CF3(柴田試薬)
(c) CF3ラジカル生成→不飽和結合への付加
しかしながら、(d) 炭素ラジカルに対するCF3はほぼ手つかずだった。少数ながら関連する先例としてR-N=N-CF3の高粘性溶媒中UV開裂[1]、Cu+CF3SO2Na+tBuOOHによるアルケンの1,2-ビスCF3化[2]が挙げられるものの、実用性は低い。

技術や手法のキモ

著者らは、アルキルラジカルのCF3化を行なうための試薬として、(bpy)CuIII(CF3)3錯体[3]を選択している。アルキルハライドから還元剤(Si-H、Sn-H)処理によってアルキルラジカルを選択的に生成し、これをCF3源へとぶつける発想で探索された系と推測される。錯体は下記のとおり簡便に合成でき、空気中で安定に扱える。

主張の有効性検証

①反応条件検討

6-bromohexyl tosylate を用いて初期検討を行なっている。OTs基はBr基と同程度に求核的CF3化に反応性を有する。その一方でラジカル機構では反応しないため、メカニズムへの示唆も得られる。

この6-Br-hexyltosylateと(bpy)Cu(CF3)3の混合系に、アルキルハライドと反応するシリルラジカル生成剤を添加する方針で検討している。最終的にアセトン/水(2/1)、室温、Cu錯体(1 eq)、K2S2O8(4 eq)、Et3SiH (6 eq)を最適条件として95%単離収率で目的のトリフルオロメチル化体を得ている。水の添加は酸化剤の溶解度に寄与していると考察されている。前駆体の(Bu4N)Cu(CF3)4[3]や、求電子的CF3化剤に対して同様の条件を適用しても反応は進行しない。

②基質一般性

1級&2級臭化アルキル:アミド、イミド、スルホンアミド、スルホナート、ベンジルエーテル、シリルエーテル、カルボン酸、ケトン、エステル、ニトリル、アセタール、カーバメート、塩化アルキル、塩化アリール、アジドなどなど、代表的な官能基はあらかた維持される。

3級臭化アルキル:オレフィン形成やヒドロキシルかなどの副生物を生じるため、上手く行かない。

ヨウ化アルキル:臭化物よりも高活性な筈だが、標準条件では20~30%収率、原料回収60~70%に留まってしまう。UV(365nm)照射によって改善が見られ、適用可となる。

③反応機構に関する示唆

ラジカルクロック実験(eq 1,2)、エチルラジカルとの反応(eq 3,4)などから、アルキルラジカルと(CuIII-CF3ではなく)CuII-CF3間の反応[4]が示唆される。

またTEMPO捕捉実験(eq 5)から、錯体へのUV照射によるCF3ラジカルの生成も示唆される。ヨウ化アルキルを基質とする場合には、おそらく酸化的に生成するI2がradical chainを止めている。UV照射にて生じるCF3ラジカルがこれをCF3Iの形で捕捉し、反応サイクルに再関与するため収率が向上するとの考察が成されている。

これらを踏まえて、以下の様な反応機構が提唱されている。

議論すべき点

  • 錯体調製の手間はあるものの、極めて簡便な操作でCF3基が導入できるのは魅力。錯体が市販されれば、一挙に広まりそうなポテンシャルを感じる。
  • 受容性が示されていない官能基はアルコール、アルデヒド、アミン、スルフィド、炭素-炭素多重結合、含窒素複素環。アミンは酸でプロトン化しておけば保つのではないだろうか。アルコールは系中生成するEt3Si-Xと反応してしまうのかも。酸化条件であるため、スルフィド、アルデヒドはさすがに仕方が無いか。CF3ラジカルのMinisci反応が走りそうな基質、配位性基質は不都合なのだろう。ベンジルエーテルもp-Cl置換だったりするので、ベンジル位が酸化されない基質をうまく選んでいるのかもしれない。
  •  キラルな配位子を錯体に付けることで不斉化も可能に思える。上記eq4を見るに、銅を触媒量に減らすことやphotoredox系と絡めることも検討次第で出来そうに思える。次なる展開か。

参考文献

  1. Gölitz, P.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 854. DOI: 10.1002/anie.197708541
  2. Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 1906. DOI: 10.1021/acs.orglett.5b00601
  3. Romine, A. M.; Nebra, N.; Konovalov, A. I.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. Angew. Chem., Int. Ed. 2015, 54, 2745. DOI: 10.1002/anie.201411348
  4. Nebra, N.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 16998. DOI: 10.1021/ja5103508
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 感染制御ー薬剤耐性(AMR)ーChemical Times特集よ…
  2. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  3. 拡張Pummerer反応による簡便な直接ビアリール合成法
  4. 酸で活性化された超原子価ヨウ素
  5. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  6. 研究者の活躍の場は「研究職」だけなのだろうか?
  7. 神秘的な海の魅力的アルカロイド
  8. “逆転の発想”で世界最高のプロトン伝導度を示す新物質を発見

注目情報

ピックアップ記事

  1. アメリカ大学院留学:卒業後の進路とインダストリー就活(2)
  2. エストロゲン、閉経を境に正反対の作用
  3. 強塩基条件下でビニルカチオン形成により5員環をつくる
  4. 第2回慶應有機合成化学若手シンポジウム
  5. 「化学と工業」読み放題になったの知ってますか?+特別キャンペーン
  6. 子ども向け化学啓発サイト「うちラボ」オープン!
  7. ポリセオナミド :海綿由来の天然物の生合成
  8. 鄧 青雲 Ching W. Tang
  9. 日本学術振興会賞受賞者一覧
  10. マリンス有機化学(上)-学び手の視点から-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー