第121回のスポットライトリサーチは、早稲田大学 先進理工学部 化学・生命化学科 柴田高範研究室出身の大谷 卓先生(現在は阿南工業高等専門学校教員として勤務されています)にお願いしました。
柴田研究室は、遷移金属触媒による触媒的不斉炭素炭素結合形成反応の開発などを中心に、これまでに多くのオリジナルな反応を開発されています。
この度、インタビューをさせていただいた大谷先生は、本研究室において、市販品試薬からわずか2工程でのらせん状化合物・ヘリセンの合成に成功しました。
本成果は、高輝度液晶ディスプレイなどの高度な光情報処理技術への応用に期待されており、ACIE誌に掲載されただけでなく、プレスリリースとしても取り上げられています。
Facile Two-Step Synthesis of 1,10-Phenanthroline-Derived Polyaza[7]helicenes with High Fluorescence and CPL Efficiency
T. Otani, A. Tsuyuki, T. Iwachi, S. Someya, K. Tateno, H. Kawai, T. Saito, K. S. Kanyiva, T. Shibata
Angew. Chem. Int. Ed. 2017, 56, 3906. DOI: 10.1002/anie.201700507
研究室を主催されている柴田先生は、大谷先生を次のように評されています。
大谷さんは、卒業研究から、埼玉大学、東京理科大学、理研、早稲田大学と変わりながらも、20年以上にわたり一貫して複素環化合物の合成と物性の研究に携わっています。そして複素環へのたゆまぬ愛情が、今回の成果に繋がったと思います。柔和な笑顔の中に秘める絶対に曲げない、諦めない信念を、学生達も見習って欲しいです。
それでは、本成果をご覧ください!
Q1. 今回スポットライトリサーチの対象となった研究を簡単にご説明ください。
次世代の光エレクトロニクスとして円偏光の活用が注目される中、円偏光発光(CPL)材料となる低分子有機化合物の開発が強く求められており、ヘリセン類のCPL特性に関する研究が活発に行われています。しかし、これまでの七環式以上のヘリセンの合成法では、市販の試薬から多くの工程数が必要であるため、大量合成が一般的に困難でした。さらに、ヘリセンは有機化合物の中では比較的高い円偏光発光異方性因子(g値)を示しますが、一般的に発光特性(蛍光量子収率)が低いことが、ヘリセンを光学材料として応用する上での大きな課題でした。
私たちは、東京化成からも市販されている2,9-ジクロロ-1,10-フェナントロリンとアニリン誘導体からわずか2工程により、含窒素七環式ヘリセンの合成に成功しました。そして4つの窒素原子を有するこのらせん化合物は、極めて高い蛍光発光特性と優れた円偏光発光特性の両立を達成しました1。
Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。
本ヘリセン合成の2段階目の環化では、以前に開発した超原子価ヨウ素試薬を用いる分子内脱水素反応を用いています2。
形式的にはこの反応を2カ所で行うことでヘリセン骨格を構築しており、1グラムスケールの実験でも91%の収率でヘリセンを合成することに成功しました。さらに、本合成で得られたラセミ体のヘリセンはキラルカラムを用いたHPLCにより分割でき、キラル中圧カラム(キラルフラッシュ,ダイセル)を用いれば、1回で50 mgの分割が可能です。反応開発を研究している者として、自分の反応を利用して役に立つ(かもしれない)化合物を合成することは一つの夢でした。キラルヘリセンの実用的な入手法まで示せたことには満足しており、今後、種々の多アザヘリセンの合成、光学分割に適用したいと考えています。
Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?
前述した反応によりヘリセンが生成することは比較的早期にわかりましたが、なかなか収率が向上せず、最終的な反応条件に到達するまで3年近くかかりました。染谷くん、露木さん、(以上早稲田大)、岩地くん(東京理科大)が反応条件を粘り強く精査してくれたおかげで、最適化できたことに感謝しています。
CPLの測定装置は国内でも非常に少なく、本ヘリセンのCPL特性がわからぬまま研究を進めざるを得ませんでした。研究の後半にようやく測定でき,両エナンチオマーのミラーイメージのCPLと比較的高い偏光異方性因子(glum 値)が確認されたときは喜びと共に安堵したことを覚えています。
Q4. 将来は化学とどう関わっていきたいですか?
現在、工業高等専門学校(高専)の教員をしており、大学に勤めていた時に比べて教育に携わる時間が長くなっています。高専の2、3年生(高校2、3年生に相当)に大学レベルの有機化学やその実験を教えるのは、簡単ではありませんが挑戦的で楽しくもあります。化学工業の未来を担う優秀な技術者を一人でも多く育てたいです。また、この秋から卒研生も研究室に配属されるので、高専からも独創的で重要な研究を発信したいと思っています。
Q5. 最後に、読者の皆さんにメッセージをお願いします。
ロジウム触媒を用いたイン−カルボジイミドのPauson–Khand 反応を研究していたとき3、副生成物としてL字型に5つの芳香環が縮環した化合物が偶然に生成し、それを単離同定したことがパイ電子系化合物の化学に携わるきっかけとなりました4。パイ電子系化合物の研究では光物性の評価が重要となりますが、私は不勉強で物性の知識が乏しかったためとても苦労しました。
自然科学のボーダレス化に伴い化学の守備範囲はどんどん広がっているように思います。学生の皆様は専門以外も幅広く勉強し、学際的な研究課題にも臆せず取り組めるように備えて下さい。
最後になりましたが、本研究に関して数多くのご指導をいただいた柴田高範先生(早稲田大)、河合英敏先生(東京理科大)、齊藤隆夫先生(東京理科大)に深く感謝申し上げます。
関連論文
- T. Otani, A. Tsuyuki, T. Iwachi, S. Someya, K. Tateno, H. Kawai, T. Saito, K. S. Kanyiva, T. Shibata, Angew. Chem. Int. Ed. 2017, 56, 3906-3910.
- N. Kutsumura, S. Kunimatsu, K. Kagawa, T. Otani, T. Saito, Synthesis 2011, 3235-3240.
- T. Saito, N. Furukawa, T. Otani, Org. Biomol. Chem. 2010, 8, 1126-1132.
- T. Otani, T. Saito, R. Sakamoto, H. Osada, A. Hirahara, N. Furukawa, N. Kutsumura, T. Matsuo, K. Tamao, Chem. Commun. 2013, 49, 6206-6208.
関連リンク
•早稲田大学 先進理工学部 化学・生命化学科 柴田高範研究室
•市販品試薬からわずか2工程、らせん状低分子有機化合物の合成法を開発(早稲田大学プレスリリース)
研究者の略歴
大谷 卓
所属:(独)国立工業高等専門学校機構 阿南工業高等専門学校 創造技術工学科 化学コース講師
経歴:
2000年 日本学術振興会・特別研究員(DC2)
2001年 東京理科大学理学部第一部化学科助手(後に助教:齊藤隆夫教授)
2009年 独立行政法人理化学研究所基幹研究所研究員
(機能性有機元素化学特別研究ユニット:玉尾皓平先生)
2012年 早稲田大学先進理工学部化学・生命化学科助手(柴田高範教授)
2013年 東京理科大学総合研究機構キラリティー研究センター講師
2015年 現職
研究テーマ:複素環化合物を母体とするパイ電子系化合物の新規合成法