[スポンサーリンク]

スポットライトリサーチ

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

[スポンサーリンク]

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんにお願いしました。

栗木さんの所属する石谷・前田研究室は、光エネルギーを活用し新しい化学的概念を創り上げることを一大目標としています。光励起できる新しい触媒を合成し、さらに応用することによって、光エネルギーから化学エネルギーへの効率的変換を目指しています。

同研究室からは以前、中田 明伸さんにスポットをあて、研究を紹介させていただきいています(記事:第68回 光エネルギーによって二酸化炭素を変換する光触媒の開発)。

今回、栗木さんは高効率的に人工光合成を行なえる光触媒を開発し、その成果をACIE誌に報告しました。また、プレスリリースでも取り上げられていましたので、インタビューさせていただきました。

Robust Binding between Carbon Nitride Nanosheets and aBinuclearRuthenium(II) Complex Enabling Durable,SelectiveCO2 Reductionunder Visible Light in Aqueous Solution

R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani, K. Maeda

Angew. Chem. Int. Ed. 2017, 56, 4867. DOI: 10.1002/anie.201701627

それでは本成果をご覧ください!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?簡単にご説明ください。

私たちの研究室では、「光エネルギーを用いて二酸化炭素を資源化(還元)する触媒(光触媒という)の開発」を行なっております。中でも私は、酸化反応部位に半導体を、二酸化炭素還元部位に金属錯体を用いたハイブリッド型の光触媒の研究に注力しています。一般的に半導体は光酸化能が高く、一方で金属錯体は二酸化炭素の還元能力が高いことから、本系は半導体と金属錯体という異なる2種の長所を融合した最新の系だと言えます。この様な系を構築するには、半導体と金属錯体を強固に吸着させ、両間での効率的な電子/エネルギー移動を実現させることが必須です。

今回私は、ナノシート構造を有する有機半導体カーボンナイトライド(C3N4)と金属錯体を、ホスフォン酸部位を介して吸着させることで、特異的に両者を強固に複合化できることを見出しました。この性質を活かすことで、可視光照射下、及び水溶液中にて、二酸化炭素をギ酸へと、高選択(~99%)かつ高い触媒回転数(~2100)にて還元することに成功しました。これらはいずれも、ハイブリッド型光触媒系では過去最高の性能です(従来の最高値はそれぞれ75%と800程度)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

固体表面に錯体を強固にさせる技術は、耐久性向上といった観点から光触媒や色素増感太陽電池といった様々な分野において重要視されています。これらの系の殆どは、TiO2を始めとする酸化物等の無機半導体を固体部位として用いられてきましたが、水溶液中での容易な脱離が系の構築を困難にしてきました。新たな選択肢として、私は有機半導体カーボンナイトライド(特にナノシート構造を有するもの)に注目し続け、研究を推し進めてきました。最終的にはこれが成果に繋がりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

概念的な話になってしまいますが、、、

ハイブリッド型光触媒系はまだまだ報告例が少なく、分かっていないこと、達成されていないことばかりです。そのため、研究結果を発散させないためにも、「目標設定を適切に定めること」は非常に大切で、また難しいことだと感じます。私達の大きな目標の一つは、ハイブリッド型光触媒系を発展させ、植物の光合成同様に、水の酸化反応と二酸化炭素の還元反応を同時に達成することです。これは、「水と二酸化炭素を、光エネルギーを用いて酸素と資源に変換する」という、究極的にクリーンな反応系であると言えます。これを達成するには、「錯体­–半導体間を強固に吸着させること」、「水溶液中で高い性能にて二酸化炭素還元反応を進行させること」が必要です。この様にトップダウン的に考えることで、適切に目標を定め、論文に繋げることが出来ていると思います。

Q4. 将来は化学とどう関わっていきたいですか?

幸運なことに私の指導教員の前田先生と石谷先生は、それぞれ半導体と金属錯体のスペシャリストです。そのため、私は半導体と金属錯体といった少し系統が異なる2種の物質を融合した魅力的な系の構築、及びその発展を行うことが出来ています。この経験から、様々な分野間で融合し協力し合うことの重要さを実感しています。今後は、もっと視野を広げた他分野間の繋がりを大切にし、化学を発展させて行きたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

偉そうなことは言えませんが、本論文の経験から、「色々な側面から実験結果を見ること」は大切だと感じます。実験結果一つをとっても、良い側面、悪い側面、色々あると思います。具体的には、例えば今回私が報告したカーボンナイトライド­–金属錯体間の吸着に関してですが、飽和吸着量に関しては無機の酸化物半導体と比べて優れていません(これは悪い側面です)。しかし、一部の錯体は非常に強固に吸着しています(これは良い側面です)。この論文は、いわば良い側面に注目して系の構築を推し進めた結果です。一つの側面に捉われず、様々な側面から自分の研究結果を見直すことが大切ではないでしょうか。

関連論文

・R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani, K. Maeda, J. Am. Chem. Soc., 2016, 138 (15), 5159–5170.

・R. Kuriki, K. Maeda, Phys. Chem. Chem. Phys., 2016, 19 (7), 4938–4950.

・R. Kuriki, O. Ishitani, K. Maeda, ACS Appl. Mater. Interfaces, 2016, 8 (9), 6011–6018.

・R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Angew. Chem., Int. Ed., 2015, 54 (8), 2406–2409.

関連リンク

石谷・前田研究室

新開発の光触媒でCO2を高効率に再資源化―緑色植物の光合成を人工系で実現―(東京工業大学プレスリリース)

研究者の略歴

栗木 亮 (くりき りょう)

所属

2016年4月-現在 東京工業大学理学院化学系, 石谷・前田研究室 (博士後期課程)

2017年4月-現在 日本学術振興会特別研究員 (DC2)

研究テーマ

有機半導体と金属錯体からなる二酸化酸素還元光触媒系の創製

 

 

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  2. 有機アジド(2):爆発性
  3. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  4. 出張増の強い味方!「エクスプレス予約」
  5. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  6. 二酸化炭素をはきだして♪
  7. ルミノール誘導体を用いるチロシン選択的タンパク質修飾法
  8. 地域の光る化学企業たち-2

注目情報

ピックアップ記事

  1. イオンペアによるラジカルアニオン種の認識と立体制御法
  2. 有機合成化学協会誌2019年4月号:農薬・導電性電荷移動錯体・高原子価コバルト触媒・ヒドロシアノ化反応・含エキソメチレン高分子
  3. マテリアルズ・インフォマティクスのためのSaaS miHubの活用方法
  4. 【エーザイ】新規抗癌剤「エリブリン」をスイスで先行承認申請
  5. 触媒の貴金属低減化、劣化対策の技術動向【終了】
  6. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  7. 日本コンピュータ化学会2005秋季年会
  8. 未来を切り拓く創薬DX:多角的な視点から探る最新トレンド
  9. フロー法で医薬品を精密合成
  10. 細胞集め増やす化合物…京大化学研発見、再生医療活用に期待

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー