[スポンサーリンク]

化学者のつぶやき

メソリティック開裂を経由するカルボカチオンの触媒的生成法

[スポンサーリンク]

2016年、プリンストン大学・Robert R. Knowlesらは、可視光レドックス触媒による1電子酸化を経てアルコキシアミンからカチオンラジカルを生成し、その後メソリティック開裂を進行させ、カルボカチオンを発生させる新手法を開発した。中性条件かつ温和な条件で進行し、酸に弱い基質や酸化されやすい求核剤も使用できる。

“Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations”
Zhu, Q.; Gentry, E. C.; Knowles, R. R.* Angew. Chem. Int. Ed. 2016, 55, 9969. DOI: 10.1002/anie.201604619 (アイキャッチ図は本論文より引用)

問題設定

 カルボカチオンは有機合成において古典的な中間体であるが、複雑化合物や不斉触媒への応用は限定的であり、新しい生成法が望まれている。カルボカチオンの発生法は様々あるが、それぞれ求核剤の制限がある。近年はイオンペアを活用した不斉触媒反応の研究も盛んとなってきているが、不安定なカルボカチオンは制御できないでいる。そこで中性条件でカルボカチオンを発生させる新規触媒反応は合成上、十分な利点と多様な求核剤の使用ができる可能性がある。

 著者らは、メソリティック開裂が問題解決の手法になると考えた。不対電子を近傍に持つ共有結合は、不安定化されることが知られている。このためしばしば自発的に開裂し、中性フリーラジカルとカルボカチオンが生成する。しかしながらこの化学過程は、有機合成的には過去ほとんど活用されてこなかった[1]。

技術や手法の肝

 著者らはマイルドな酸化過程で発生できるカチオンラジカルをメソリティック開裂前駆体として用いることを考えた。しかしながら、酸化ポテンシャルの低すぎる基質は、開裂後に生じるカルボカチオンが不安定化される懸念があり、バランスを考慮する必要があった。

 そのような観点からTEMPO脱離基がチョイスされた(冒頭図)。1電子酸化のポテンシャルは汎用求核剤と比較しても十分低い(Ep/2 = 0.7V vs Fc/Fc+ in MeCN)、メソリティック開裂によって安定なTEMPOラジカルが生じる、C-O結合も通常よりはるかに弱い((2-phenyl)isopropyl TEMPO etherのBDFEC-O=26 kcal/mol)、にもかかわらず酸化前のTEMPO誘導体は安定で取扱い容易、など諸々の特性が魅力的と考えられた。

主張の有効性検証

①反応条件の最適化

 TEMPOエーテルが可視光レドックス触媒による1電子酸化によってカルボカチオンを生成するかどうかを検証するため、シリルエノールエーテルを用いたカルボカチオン捕捉反応を行なった。光触媒を検討したところ、酸化力の強いRu(bpz)3(BARF)2(E0[Mn*/Mn-1] = +1.07 V)とIr(dF(CF3)ppy)(d(CF3)bpy)PF6 (E0[Mn*/Mn-1] = +1.26V)で反応が効率的に進行した。溶媒はニトロメタンが最適。対照実験として、遮光、光触媒無し、ルイス酸添加の条件を検討したが、目的物はほとんど得られなかった。

②基質一般性の検討

  カルボカチオン側は、ベンジル位・アリル位・3級炭素での反応に限定される。何らかの安定化要素がないと2級カチオン生成へアプローチすることは困難。単純な3級でも、E1脱離が併発して低収率に留まる。シリルエノールエーテルの他には、アリルシラン、アルケニルトリフルオロボレート塩、ヘテロ原子求核剤も用いることが可能。Friedel-Crafts型反応も問題なく進行。

③メカニズムに関する示唆

想定触媒サイクルは下記のとおり。

冒頭論文より引用

まず励起状態のIrがTEMPO誘導体を1電子酸化し、メソリティック開裂により、カルボカチオンを生じる。このカルボカチオンがシリルエノールエーテルとC-C結合を作り、目的物となる。生じたTEMPOラジカルはシリルカチオンと反応し、その際に電子をイリジウムから受け取ってIr(Ⅲ)が再生し、触媒サイクルが完結する。この時にTEMPOラジカルをIrが直接還元してTEMPOアニオンとなる経路は非常に困難となる(E1/2= -1.95 V vs. Fc/Fc+ in MeCN)。しかしTMS基がプロトンの代わりとしてはたらくsilyl-coupled ET過程を想定することで、還元電位が十分に下がり、この触媒サイクルが合理的になると考えられた。

この触媒サイクルは下記2つの実験事実からも支持される。

  • 蛍光消光実験を実施したところ、Ir触媒とTEMPOエーテルを混ぜると濃度依存的消光が起きることが確認された。一方でシリルエノールエーテルとは消光を起こさない。ゆえにIr触媒励起種と最初に反応するのはTEMPOエーテルのほう。
  • TEMPOエーテルのCV測定(MeCN中)を行なったところ、酸化sweepでは2つピークが確認された。 0.71V(vs Fc/Fc+)のピーク、N-O lone pairの酸化に対応し、0.21V(vs Fc/Fc+)のピークはTEMPO・/TEMPO+に対応している。このことから、1電子酸化によるTEMPOラジカルの系中生成が確認された。

議論すべき点

  • TEMPO捕捉がラジカル機構の検証にしばしば用いられるが、可視光レドックス反応や強力な1電子酸化条件に関しては、このような経路が走る可能性を常に想定しておく必要がある。
  • 基質が酸化に弱い部位を持つ場合、TEMPOラジカルがによって捕捉されてしまうため、系が複雑化するか触媒サイクルが回らなくなる可能性がある。
  • 単純な2級カルボカチオンは生成しないが、ほかの安定ラジカル構造を活用することで解決できる可能性もあるか?TEMPOのメチル基をより嵩高くするなどはどうか?
  • TEMPO導入・基質合成にやや難があるため、one-potでできれば活用の幅が広がり、合成上有用性が格段に向上する。C-H結合のHAT切断から生じた炭素ラジカルのTEMPO捕捉などは、一つの手段になるかもしれない。
  • TEMPO以外に同様の効果を示す、よりアクセスしやすい脱離基はないものか?理屈の上では脱離ラジカルが安定であればあるほど、本法の効果は高そうである。

次に読むべき論文は?

  • カルボカチオン反応の不斉触媒化に寄与するキラルカウンターアニオン触媒・イオンペア触媒に関する総説論文[2,3]

参考文献

  1. メソリティック開裂を有機合成に応用した数少ない例:(a) Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3842. DOI: 10.1021/ja015526d (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am. Chem. Soc. 2004, 126, 12596. DOI: 10.1021/ja046125b
  2. Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  3. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. doi:10.1038/nchem.1405
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 日本国際賞受賞者 デビッド・アリス博士とのグループミーティング
  2. ケトンをエステルに変えてぶった斬る!脱アシル型カップリング反応の…
  3. 実験条件検討・最適化特化サービス miHubのメジャーアップデー…
  4. 天然物界70年の謎に終止符
  5. カーボンニュートラル材料とマテリアルズ・インフォマティクス活用で…
  6. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  7. 【いまさら聞けない?】アジドの取扱いを学んでおこう!
  8. 生体組織を人工ラベル化する「AGOX Chemistry」

注目情報

ピックアップ記事

  1. 積水化学と住友化学、サーキュラーエコノミーで協力。ゴミ原料にポリオレフィンを製造
  2. リチウムを用いたメカノケミカル脱水素環化法によるナノグラフェン合成
  3. 第134回―「脳神経系の理解を進める分析化学」Jonathan Sweeder教授
  4. 超難関天然物 Palau’amine・ついに陥落
  5. 第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!
  6. 4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!
  7. チロシン選択的タンパク質修飾反応 Tyr-Selective Protein Modification
  8. 向山アルドール反応40周年記念シンポジウムに参加してきました
  9. 構造の多様性で変幻自在な色調変化を示す分子を開発!
  10. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の瞬間』

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー