リンの化学第 2 弾です。前回の記事では、Wittig 反応に代表される「四員環中間体からのシン脱離反応」についてお話ししました。今回は、光延反応, 福山アミン合成あるいは Appel 反応のような置換反応を俯瞰します。これらの反応の鍵も、前回と同様に「リンと酸素の親和性の高さ」であることを説明し、リンの化学の一貫性について見ていこうと思います。
光延反応の全体像
今回の記事の出発点は光延反応にします。光延反応とは、アルコールにトリフェニルホスフィン、アゾ化合物 (DEAD) 、そして酸性プロトンを有する求核剤を作用させる反応で、その結果、立体反転を伴う置換反応が起こります。 下の例では、求核剤にカルボン酸を用いています。
副生成物に注目すると、ホスフィンオキシドが形成していることがわかります。これは、前回お話した Wittig 反応においても副生した生成物です。あとで反応機構について細かく解説ししますが、この副生成物から「リンが酸素を奪った」結果がうかがえます。また、もう一方の副生成物にも目を向けると、DEAD の N=N 二重結合にはプロトンが 2 つ付加したことに気づきます
この光延反応は、下のスキームに示すようにアルコールの立体反転法として価値があります。しかし、この記事ではそんな話には目もくれず、もっぱらリンが演じる役割に焦点を当てます。その後、他の置換反応にも視点を移し、リンの化学の共通の原理を探ります。
アルコールは SN2 反応に不向きである
ではさっそく、光延反応の反応機構を詳しく見ていってもよいのですが、
そもそもなんで複数の副生成物を出してまで、こんな複雑な反応をするの?
ということを理解していなければ、その反応機構の巧妙さを鑑賞することができないでしょう。というわけで、なぜ単純にアルコールに SN2 反応を起こすはできないかについて、簡単にお話ししておきます。
アルコールに対する SN2 反応の最も重要な問題点として、OH 基の脱離能の低さが挙げられます。というのも、OH 基が脱離したときに生じる水酸化物イオンは、それ自身が強い求核剤であると考えられるため、脱離能が低いのです。
それならば、より強い求核剤を使ってはどうか? というアイデアが浮かびます。しかし、強力な求核剤は、同時に強い塩基である場合が多いため、OH 基のプロトンと反応してしまいます。その結果、せっかくの求核剤の高い反応性が損なわれてしまいますし、この脱プロトン化されたアルコールから O2- イオンを脱離させることはさらに困難です。困りました。
では、これらの問題点を光延反応がどのように解決しているかに注目しながら、その反応機構を眺めていきます。
反応機構
第一段階
まず、リンがアゾジエステルの N=N 二重結合を攻撃します。このとき、窒素原子上に負電荷が現れますが、下の共鳴構造式が示すように、N=N 二重結合に共役したカルボニル基の酸素がその負電荷を引き受けて安定化します。
第二段階
第一段階で生じたアニオンは、共鳴安定化を受けているとはいえ、弱酸であるアミドの共役塩基と考えることができ、窒素原子が高い塩基性を示します。そこで、その窒素アニオンは求核剤を脱プロトン化し、その求核性を高めます。光延反応の概要の部分で、「酸性プロトンを有する求核剤」と注意書きしていたことは、このアミダートによる脱プロトン化の段階に効いてくるわけです。
第三段階
一方、DEAD に付加して正電荷を帯びたリン原子は、アルコールの OH 基の攻撃を受け入れます。その結果、リンはアゾエステル部分を手放しますが、このアゾエステルが脱離基になり得るのは、窒素原子上の負電荷をカルボニル基の酸素原子が引き受けることができるからです。そして、ここで生じた窒素アニオンは、第二段階と同様に塩基として作用し、正電荷を帯びたアルコールの OH 基からプロトンを引き抜きます。
最終段階
ようやく、リンがアルコールから酸素を奪う準備が調いました。このリンが装着したアルコールの炭素に求核剤が攻撃すると、酸素原子がホスフィンオキシドの一部として追い出され、置換反応が完結します。基質の立体が反転することを明記するために、遷移状態も丁寧に記しておきました。
捕まえて、奪い去る
ここまでの一連の電子の流れをまとめます。光延反応に施された仕掛けは、(1) リン化合物とアゾジエステルが協働し、求核剤を脱プロトン化して活性化すること、 (2)リン化合物がアルコールを捕まえて、OH 基をホスフィンオキシドという良好な脱離基に変換することの 2 点になります。そして、これらの複雑な反応機構のオチは、前回と同様に「リンが酸素を奪う」という結果です。この反応機構を大胆に省略すると、「リンが酸素を捕まえて、奪い去る」と要約できます。(やや無理があるか…。)
このとき、もともと脱離能の低かった水酸基の脱離を可能にしているのは、「リンと酸素の高い親和性」 の一言に尽きます。あえて前回の Wittig 型の反応との違いを挙げるなら、前回が脱離反応、つまり二重結合の生成反応であったのに対して、今回は置換反応であるという点です。
光延型 SN2 反応
続いて、その他の光延反応の変法や他の類似反応も視野を広げます。まず、光延反応と同様の条件の SN2 反応は、様々な応用例が報告されています。例えば、Ns 基で保護されたアミンを求核剤に使用する反応は、福山アミン合成として知られています。一方、DEAD の代わりに、ハロゲン化合物を使用した場合、アルコールをハロゲン化物に変換可能です。これは、Appel 反応と呼ばれており、この反応では、反応系中で発生したハロゲン化物イオンが求核剤として作用します。
付加脱離型置換反応
もっと頭を柔軟にしてみると、SN2 反応以外の置換反応においてもリンが同様の役割を果たすことに気づきます。すなわち、リンがひとたびカルボニル酸素に装着すると、その活性化されたカルボニル基では、付加脱離機構による置換反応が促進されます。これは、前回の記事の冒頭で紹介した、カルボン酸を酸ハロゲン化物に変換する反応に代表されます。一方、リン化合物がアミドから酸素を奪い去って付加脱離反応を起こすと、イミニウムイオン型の求電子剤を与えます。このイミニウムイオンは Vilsmeier–Haack 反応剤と呼ばれ、続いて芳香族求電子置換反応へと発展してゆきます (Vilsmeier-Haack 反応)。このようなカルボニル基の脱酸素化も、「リンと酸素の高い親和性」が駆動力となります。
まとめ
というわけで、前回の記事から今回にかけて、リンが活躍する有機反応を俯瞰しました。本記事では、酸素がリン化合物にひとたび捕まえると、その酸素の脱離能が高められ、置換反応が促進されるということを紹介しました。以下に、リン化合物が関与する有機反応をできるだけ多くピックアップしました。反応の形式は異なっても「リンが酸素を奪う」という原理が一貫性していることが伝われば幸いです。
反応名 | 反応式 |
光延反応 | |
福山アミン合成 | |
Movassaghi 脱酸素化 | |
Gabriel アミン合成 | |
Appel 反応 | |
Michaelis-Arbuzov 反応 | |
Perkow 反応 | |
酸ハロゲン化物の合成
(外部リンクはこちら) |
|
Hell-Volhard-Zelinsky 反応 | |
Vilsmeier-Haack 反応 | |
関連反応
- ウィッテッヒ反応 Wittig Reaction
- ホーナー·ワズワース·エモンス反応 Horner-Wadsworth-Emmons (HWE) Reaction
- ビシュラー·ナピエラルスキー イソキノリン合成 Bischler-Napieralski Isoquinoline Synthesis
- Appel 反応を用いるホスフィンの不斉酸化
- 反応機構を書いてみよう! ∼電子の矢印講座·その 1∼
- 反応機構を書いてみよう! ∼電子の矢印講座·その 2∼
本連載の過去記事はこちら
- 第一回 有機反応を俯瞰する ーシグマトロピー転位
- 第二回 有機反応を俯瞰する ー[1,2] 転位
- 第三回 有機反応を俯瞰する ー付加脱離
- 第四回 有機反応を俯瞰する ー芳香族求電子置換反応 その 1
- 第五回 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
- 第六回 有機反応を俯瞰する ー挿入的 [1,2] 転位
- 第七回 有機反応を俯瞰する ーエノラートの発生と反応
- 第八回 有機反応を俯瞰する ーMannich 型縮合反応
- 第九回 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シン脱離)ー
- 第十回 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)ー (本記事)
- 有機反応を俯瞰するシリーズーまとめ