[スポンサーリンク]

化学者のつぶやき

ルイス酸添加で可視光レドックス触媒の機構をスイッチする

[スポンサーリンク]

スイス連邦工科大学チューリヒ校・J.W.Bodeらは、光触媒とルイス酸を組み合わせることで、Ir光触媒の酸化的クエンチと還元的クエンチのスイッチに成功した。このシステムにより、Bodeらが近年開発しているSLAP法(silicon amine protocol)によって合成できる飽和N-ヘテロ環の種類を拡張した。

“Lewis Acid Induced Toggle from Ir (II) to Ir (IV) Pathways in Photocatalytic Reactions:Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents”
Hsieh, S-H.; Bode, J. W.* ACS Cent. Sci. 2017, 3, 66. DOI: 10.1021/acscentsci.6b00334 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

飽和含窒素複素環(N-ヘテロ環)は医薬品に広くみられる骨格であり、様々な誘導体を得るべく多数のグループが研究開発を行っている。従来の方法では、変換後の窒素保護基除去がしばしば困難だったり、条件が厳しいため適用範囲が狭かったりなど、多くの課題が残されていた。

Bodeらはこの問題解決にかねてより取り組み、SnAP試薬を開発している[1]。2016年には、同様の機構で進行し毒性も低いケイ素ベースのSLAP試薬の開発にも成功した[2]。本合成系ではSLAP試薬にIr可視光レドックス触媒とアルデヒドを共存させ、対応するさまざまな飽和N-ヘテロ環に単工程でアプローチ出来る(下図)。しかしながら光触媒の酸化還元電位に制約があるため、従来型プロトコルで合成可能な飽和N-ヘテロ環はピペラジン骨格に限られていた。

Bodeらは適切なルイス酸を反応系に加えることでこの制限を克服し、モルホリン・チオモルホリン骨格なども合成可能にした。ピペラジンの場合、必要なレドックスポテンシャルは、①シリルアミンの酸化:+0.65 V (vs SCE)、②N 中心ラジカルの還元:-1.5 V (vs SCE)であり、この酸化電位と比較的高い還元電位を満たす可視光レドックス触媒としてIr(ppy)2(dtbpy)PF6(E*ox = +0.66 V、Ered = -1.51 V (vs SCE))を用いていた。チオモルフォリンやモルフォリンを合成するには、より高い酸化力(+1.1 V (vs SCE)以上)が必要となる。

SLAP法による置換ピペラジン環の合成[2]

技術や手法の肝

ルイス酸を配位させることで基質の酸化還元電位を調節したことが最大のキモである。以前のSLAP条件[2]では、還元的クエンチ過程を経由していたが、ルイス酸の添加によって酸化的クエンチ過程を経る触媒サイクルに変わる(下図)。

冒頭論文より引用

すなわち、ルイス酸によってイミンが還元されやすくなるため、光励起されたIr触媒が試薬を酸化するより先にイミンを還元し、酸化力の高いIr(IV)を生成する(Ir(IV): Eox = +1.21 V, Ir(III)*: Eox = +0.66 V (vs SCE))。これによりピペラジン環以外の基質適用を可能にしている。また、N中心ラジカルカチオンの還元も、ルイス酸の配位によって容易になっている。

主張の有効性検証

①反応条件の最適化

SLAP法の標準条件(Ir(ppy)2(dtbpy)PF6 (1 mol%), MeCN, rt, blueLED)に対して添加剤を加える方針で検討している。Ir(III)*が還元剤として機能するような酸化剤(I2, Ph3C+BF4, benzoquinoneなど)を添加しても目的物は得られなかった。TMSOTf を1当量加えるだけでは目的物は得られなかったが、2当量加えたところ36%収率で目的物が得られた。種々ルイス酸を検討した結果、Bi(OTf)3が最適なルイス酸と同定された。電子供与性置換基を持つアルデヒドを用いた場合、Bi(OTf)3よりCu(OTf)2の方が良い結果を与えた。

first screeningの実用性を増すため、Bi(OTf)3を0.5当量、Cu(OTf)2を1.0当量添加する条件を最適条件として設定した。

②基質一般性の検討

脂肪族アルデヒド、かさ高いアルデヒドを用いた場合には低収率になる。ビストリメチルシリルSLAP試薬を用いた場合には、2,3-二置換生成物が得られる。7 員環(チアゼパン)合成にも拡張可能。最適条件ではヘテロアリールアルデヒドは用いることができなかったが、BF3添加による配位性窒素保護を経ることで適用可能になる。より酸化力の強い光触媒であるTPP・BF4(E*ox=2.02 V, Ered =-0.35 V (vs SCE))を用いると、モルフォリン型でも反応は進行する。

③反応機構に関する示唆

以下の実験事実が観測されている。

  1. 基質は励起光触媒をクエンチしない。
  2. ルイス酸は励起光触媒をクエンチする。
  3. ルイス酸によって活性化されたイミンは光触媒をクエンチする。

ゆえに触媒サイクルの開始はIr(III)*種によるルイス酸の還元か、ルイス酸によって活性化されたイミンのどちらかである。

議論すべき点

  • 可視光レドックス触媒反応を設計する際、光触媒の酸化力/還元力どちらかを上げようとするとどちらかが低下する問題に直面する。より強い酸化力が必要な系では使える反応剤が限定され出す(触媒回転させるために反応剤自体が強力な酸化力を持たねばならない)。ゆえに基質側の酸化還元電位を調節できる方法論は有用である。その問題解決にルイス酸添加という簡単な方法でアプローチし、成功した例と言える。

次に読むべき論文は?

  • ルイス酸と可視光レドックス触媒の組み合わせを成功させた最近の事例[3]

参考文献

  1. Luescher, M. U.; Geoghegan, K.; Nichols, P. L.; Bode, J. W. Aldrichim. Acta 2015, 48, 43–48. [PDF]
  2. Hsieh, S.-Y.; Bode, J. W. Org. Lett. 2016, 18, 2098. DOI: 10.1021/acs.orglett.6b00722
  3. Lee, K. N.; Lei, Z.; Ngai, M.-Y. J. Am. Chem. Soc. 2017, 139, 5003. DOI: 10.1021/jacs.7b01373
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. レビュー多くてもよくね?
  2. 世界が終わる日までビスマス
  3. ケムステイブニングミキサー2018ー報告
  4. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントと…
  5. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級…
  6. プレプリントサーバについて話そう:Emilie Marcusの翻…
  7. 白金イオンを半導体ナノ結晶の内外に選択的に配置した触媒の合成
  8. 分析技術ーChemical Times特集より

注目情報

ピックアップ記事

  1. 社会人7年目、先端技術に携わる若き研究者の転職を、 ビジョンマッチングはどう成功に導いたのか。
  2. バナジル(アセチルアセトナト) Vanadyl(IV) acetylacetonate
  3. エンテロシン Enterocin
  4. とにかく見やすい!論文チェックアプリの新定番『Researcher』
  5. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part I
  6. 希少金属
  7. Tattooと化学物質のはなし
  8. 元素手帳 2018
  9. フッフッフッフッフッ(F5)、これからはCF3からSF5にスルフィド(S)
  10. 続・企業の研究を通して感じたこと

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP