[スポンサーリンク]

化学者のつぶやき

可視光レドックス触媒を用いた芳香環へのC-Hアミノ化反応

[スポンサーリンク]

2015年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触媒を用いた芳香環への位置選択的C-Hアミノ化反応を開発した。アレーンカチオンラジカルを活性種とした機構で進行するため、アミン側の適用が広いことが特徴である。

”Site-selective arene C-H amination via photoredox catalysis”
Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.* Science 2015, 349, 1326-1330. DOI: 10.1126/science.aac9895

問題設定と解決した点

 従来法の芳香族アミノ化は、炭素-水素(C-H)結合を炭素-ハロゲン結合や炭素-ホウ素結合へ一旦変換し、クロスカップリング形式で合成することが主流であった。この手法では多段階を要するとともに、ハロゲンやホウ素由来の廃棄物が不可避となる。窒素酸化剤をアミン源とするsp2C-Hアミノ化の例は数例知られている[1]が、導入できるアミンが限られることから多様性が得にくい。

 本報告では、可視光レドックス触媒条件で行うことで、位置選択的かつ1工程にて、芳香環C-H結合をアミノ化できる反応が実現されている。

技術や手法のキモ

 福住触媒(Mes-Acr+)を用いた光誘起電子移動(PET)過程により、芳香環からアレーンカチオンラジカルを生じさせることが鍵となっている。この事実は福住らによって見いだされており、また同研究で酸素を最終酸化剤として使えるだろうことも示唆されている[2]。

 電気化学的な酸化によるアレーンカチオンラジカルを経由してC-Hアミノ化が行えることは、吉田らによって報告されている[3]。しかしながらこの場合は、アミンの保護―脱保護が必要となっていた。

主張の有効性検証

①反応条件の最適化

アニソールおよびピラゾールを基質として反応条件の検討を行った。アクリジニウム触媒A, Bを用い、酸化剤、濃度、溶媒を検討したが、中程度の収率から向上しなかった。原因として以下が考えられた。

  1. 原料の酸化ポテンシャル(Ep/2 = +1.87V vs SCE)に対して目的物のポテンシャル(Ep/2 = +1.50V vs SCE)が低いため、励起された触媒が目的物を酸化してしまい、原料の1電子酸化が進まない。
  2. メチルエーテルの酸化によって生じるギ酸フェニルが主な副生成物として生じる。この副反応の抑制が課題。
  3. 触媒やアニソールの分解が確認される。系中生成するヒドロキシラジカルに対しておそらくは不安定。

この解決策として下記を適用したところ、収率の大幅な向上が見られた。

  1. TEMPOの添加:系内の強ラジカルを緩和することで、マスバランスの改善が見られた。添加量も重要で、多すぎると収率が低下する。
  2. 触媒Cを用いる:アクリジニウム触媒の3,6位に立体障害(t-Bu)を導入することで、分解反応に対して安定化される。

②基質一般性の検討

冒頭図記載のものを最適条件とし、基質一般性の検討を行った。

パラ選択的に反応が進行。メトキシ基以外にも電子供与基であれば反応は進行する。ただし、電子供与能が低いアレーンの場合、今回の触媒では1電子酸化できなくなる。選択性に関しては、LUMOや部分電荷の計算でほぼ推測できる。電気化学系はベンジル位も反応してしまうが、今回の系では制御可能。

また、アンモニア等価体としてアンモニウムカーバメートを使うことで、NH2導入も選択的に進行する。

次に読むべき論文は?

  • 同機構で達成された芳香族C-Hシアノ化反応[4]

参考文献

  1. (a) Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926 (b) Foo, K.; Selia, E.; Tohme, I.; Eastogate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279. DOI: 10.1021/ja501879c (c) Kawakami, T.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2015, 137, 2460. DOI: 10.1021/ja5130012 (d) Ito, E.; Fukushima, T.; Kawakmi, T.; Murakami, K.; Itami, K. Chem. 2017, 2, 383. DOI: 10.1016/j.chempr.2017.02.006
  2. Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Chem. Sci. 2011, 2, 715. DOI: 10.1039/C0SC00535E
  3. Morofuji, T.; Shimizu, A.; Yoshida, J.-i. J. Am. Chem. Soc. 2014, 136, 4496. DOI: 10.1021/ja501093m
  4. McManus, J. B.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 2880. DOI: 10.1021/jacs.6b12708

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. TED.comで世界最高の英語プレゼンを学ぶ
  2. 窒素を直接 “消去” する分子骨格変換
  3. 植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見
  4. 含ケイ素四員環-その2-
  5. 海洋天然物パラウアミンの全合成
  6. シス優先的プリンス反応でsemisynthesis!abeo-ス…
  7. 最先端バイオエコノミー社会を実現する合成生物学【対面講座】
  8. 新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

注目情報

ピックアップ記事

  1. 僅か3時間でヒトのテロメア長を検出!
  2. コランヌレン : Corannulene
  3. シャウ ピリミジン合成 Shaw Pyrimidine Synthesis
  4. 239th ACS National Meeting に行ってきた
  5. エステル、アミド、ニトリルの金属水素化物による部分還元 Partial Reduction of Esters, Amides nad Nitriles with Metal Hydride
  6. 三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!
  7. 小スケール反応での注意点 失敗しないための処方箋
  8. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活躍する化学メーカー編~~
  9. ジェフリー·ロング Jeffrey R. Long
  10. 有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー