[スポンサーリンク]

化学者のつぶやき

ピリジン-ホウ素ラジカルの合成的応用

[スポンサーリンク]

南京大学のShuhua Liらは、4-シアノピリジンとビス(ピナコラト)ジボラン(B2pin2)の組み合わせがホウ素-ホウ素結合を均等開裂させることを見いだし、エノンとピリジン4位間でのラジカルカップリングに応用した。光や金属を使うことなくボリルラジカル種を生成させ、合成的に活用できる新たなコンセプトである。

“Metal-Free Synthesis of C‑4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study”
Wang, G.; Cao, J.; Gao, L.; Chen, W.; Huang, W.; Cheng, W.*; Li, S.* J. Am. Chem. Soc. 2017, 139, 3904. DOI: 10.1021/jacs.7b00823

問題設定と解決した点

 ホウ素-ホウ素(B-B)結合の開裂は、通常は不均等開裂形式で進行する。例えば強塩基、遷移金属、NHCリガンドを用いてこれを行い、ボリルアニオンとして合成反応に用いる報告は多数知られている[1]。しかしながら強固なB-B結合を均等開裂させることは通常困難である。また、4-位置換ピリジンの医薬、機能性材料としての有用性から、これまでにない新規合成戦略の開拓も望まれていた。

 著者らは最近、4-シアノピリジンをルイス塩基として用いることでB-B結合を均等開裂させる方法を報告した[2]。生じたボリルラジカル種は、ヒドラジンやスルフィド、キノンを還元できることが示されていた。これがピリジン導入試薬として使えるとの発想から、表題の研究に取り組んでいる。

技術や手法のキモ

 中間体と目されるピリジン⁻ボリルラジカル種をDFT計算すると、C4位のスピン密度が高いことが見いだされた。これがボリルラジカル+ピリジン炭素ラジカルの”bifunctional reagent”として機能するのではないかとの着想が研究の発端となっている。またこのラジカル生成過程は可逆であり、ピリジン-ボリルラジカルはpersistent radicalであることも示されている。

画像は論文SIより引用


主張の有効性検証

想定される反応機構は以下の通りだが、これをいくつかの手法で裏付けている。

①計算化学による検証

シクロヘキセノン(2b)がピリジン-ボリルラジカル(1)のホウ素と反応してInt2を与える。B-O結合が強いため、Int2は原系から1.8kcal/molしか不安定化を受けていない。

そこからさらに1と反応する経路だが、1,2-付加と1,4-付加の二通りが考えられる。計算からは、1,4-付加体(Int3)のほうが1,2-付加体(Int4)よりも熱力学的に安定であることが示される。しかしながら生成系と遷移状態のエネルギー差は1,2-付加経路のほうが小さいため逆反応が進行しうるとの考察から、Int3Int4間での可逆平衡の存在が仮定された。

エネルギー図は論文より引用

②実験による検証

主には以下の事実から提唱反応機構がサポートされると主張している。

  1. 高温で反応を行うと1,2-/1,4-の選択性が1,4-付加側に寄る。
  2. Int3からpinB-CNが脱離した化学種がHRMSで観測される。
  3. 中間体のボロンエノラートが分子内CN基でトラップされる。
  4. ラジカルクロック実験によりシクロプロパン開環体が得られる。

③基質一般性

 エノンへの付加では1,4-付加が優先するが、少しの立体障害の影響でも選択性が大きく落ちてしまう。C3-置換ピリジンはある程度の官能基許容性があり、遷移金属を用いる場合に障害となるチオールやハロピリジンも許容される。C2-置換ピリジンでは反応は進行しない(立体障害の影響)。アルデヒド、ケトン、イミンへの反応も可能。多官能基性化合物のLate-Stage官能基化にも使える。


議論すべき点

  • 計算化学主導で物事を前に進めている反応開発のストーリーはユニークであり、著者のバックグラウンドが最大限に活きた研究になっている。発展性とオリジナリティの高い化学である。

次に読むべき論文は?

  • 同時期に登場した、類似コンセプトに基づくアリールハライドのボリル化[3]

参考文献

  1. Review: Dewhurst, R. D.; Neeve, E. C.; Braunschweig, H.; Marder, T. B. Chem. Commun. 2015, 51, 9594. DOI: 10.1039/C5CC02316E
  2. Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. Angew. Chem. Int. Ed. 2016, 55, 5985. DOI: 10.1002/anie.201511917
  3. Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017, 139, 607. DOI: 10.1021/jacs.6b11813
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 細孔内単分子ポリシラン鎖の特性解明
  2. iPhone/iPodTouchで使える化学アプリケーション 【…
  3. つぶれにくく元にも戻せる多孔性結晶の開発
  4. わずか6工程でストリキニーネを全合成!!
  5. 乙卯研究所 研究員募集 2022年度
  6. 機構解明が次なる一手に繋がった反応開発研究
  7. クロう(苦労)の産物!Clionastatinsの合成
  8. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻…

注目情報

ピックアップ記事

  1. ガン細胞を掴んで離さない分子の開発
  2. フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)
  3. 青いセレンディピティー
  4. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介
  5. スクラウプ キノリン合成 Skraup Quinoline Synthesis
  6. マタタビの有効成分のはなし【更新】
  7. 転位のアスレチック!(–)-Retigeranic acid Aの全合成
  8. 理系ライターは研究紹介記事をどうやって書いているか
  9. ヒドロメタル化 Hydrometalation
  10. Q&A型ウェビナー マイクロ波化学質問会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー