[スポンサーリンク]

化学者のつぶやき

メチオニン選択的なタンパク質修飾反応

[スポンサーリンク]

カリフォルニア大学バークリー校・F. Dean TosteおよびChristopher J. Changらの共同研究グループは、中性条件下に実施可能なメチオニン側鎖選択的なタンパク質生体共役反応を世界で初めて開発した。高い反応性・化学選択性・生体適合性を誇ることを活かし、均質抗体-薬物複合体(ADC)の創製と活性ベースプロテオミクス研究の二つの応用を提案している。

“Redox-based reagents for chemoselective methionine bioconjugation”
Lin, S.; Yang, X.; Jia, S.; Weeks, A. M.; Hornsby, M.; Lee, P. S.; Nichiporuk, R. V.; Iavarone, A. T.; Wells, J. A.; Toste, F. D.*; Chang, C. J.* Science 2017, 355, 597. DOI: 10.1126/science.aal3316

問題設定と解決した点

 メチオニン(Met)は疎水性アミノ酸なのでほとんどはタンパク質内部に埋もれており、表面露出数が限られる。これは反応可能点の限定を意味するため、位置選択的生体共役反応の足がかりとして魅力的である。Met側鎖の求核性はCys, Lys, Tyr, Ser側鎖に比しても弱いため、Met修飾法の先行例は強力な求電子剤や低pH条件を必要[1]としており、中性条件で行え、かつ高収率なメチオニン側鎖選択的実用条件はこれまで存在しなかった。

 著者らは酸塩基条件と相補的なReACT(redox-activated chemical tagging)戦略を採用し、これを実現するオキサジリジン型窒素転移試薬を開発した。このための要素技術は報告されている[2]が、試薬構造の最適化によってタンパク質・水溶媒でも適用可能な反応へと調節している点に進歩性がある。

主張の有効性検証

①試薬構造と反応条件の最適化

1残基の保護メチオニンを基質として、CD3OD/D2O(1/1)溶媒中、オキサジリジン試薬との反応をNMRで追跡している。先行例[2]からも予想されるが、N-転移体(スルフイミド)とO-転移体(スルホキシド)の混合物が生じる。金属触媒の添加は改善をもたらさず、スルホキシドを与えるかno reactionであった。電子求引性置換基(EWG)がO-転移体の生成を促すとの情報から、求電子性を弱めたカルバメート型構造(Ox2)に行き着いた。最適構造での反応時間は1~2分。含水溶媒系のほうがN/O選択性が良くなるが、中間体Aが備えるオキシアニオン部位との水素結合強化によるものと考察されている。

②タンパク質修飾への適用性およびMet選択性の実証

 システイン/セレノシステインは試薬と反応してS-S/Se-Seを形成してしまうが、それ以外のアミノ酸残基との交差反応性はごくわずかに留まる。生成物であるスルフイミドの安定性も種々の化学条件に対し調べている。80℃で長時間放置すると壊れる。

 カルモジュリン(Met9個含有)に対して反応させると、8~9個のメチオニンが10分未満に反応する。タンパク混合物(HeLa cell lysates)に試薬を適用し、修飾残基をLC-MS/MSで解析すると、Lys1個の修飾に対しMet235個が修飾される結果になる。この事実からもMet選択性はかなり高いと結論づけられる。

③ADCへの応用可能性

 Metは可変領域(CDR)に含まれることが比較的少ないため、Met選択的修飾法は抗体-薬物複合体(ADC)製造目的に有望である。

 GFP抗体のFabフラグメント(オリジナル分子には反応性Metが存在しないため、C末にMetを導入したもの作って反応させている)にアジド担持試薬を反応させ、引き続くClick反応によってビオチン・蛍光分子(Cy3など)・抗ガン剤を結合させている。抗原抗体反応の維持は、ドキソルビシン(Dox)添加時にGFPを表面発現させるHEK-293T細胞株に対して、上述のC3-抗体修飾体をアプライすることで実証している。Dox添加細胞の場合にのみ細胞表面にCy3およびGFPの共局在蛍光が観測される。

図は論文より引用

 またトラスツズマブFabに対しても本手法を適用し、1~2修飾体を得ている(オリジナル分子には反応性Metが存在しないため、軽鎖C末端にMetを2個組み込んだものを作って反応させている)。その後、モノメチルオーリスタチンE結合型のADCを作成し、HER2陽性なBT474乳がん細胞に対して細胞毒性を評価したところ、抗体フラグメントと薬物を単に混合したものに比べて、ADCは5倍以上強力な細胞毒性を発揮することが分かった。

図は論文より引用

活性ベースプロテオミクスへの応用可能性

 低濃度試薬をHeLa cell lysateにアプライして反応物を濃縮することで、hyper-reactiveな表面Metを保有する細胞タンパクを探索できる。このようなMetはレドックス過程を介して細胞内タンパク機能の制御に関わる可能性が高く、同定しておく価値がある。

図は論文より引用

 TOP-ABPP法[3]の考え方に倣い、Met修飾試薬添加後のプロテオーム解析を行なうと、表面にMetを持つタンパクのみが試薬と反応していることが分かった。試薬がタンパク質を変性させず、高次構造を反映させたまま修飾できることを示唆している。またこの過程で、アクチンのMet3つがその反応点になることが示された。レドックス過程がアクチン重合に重要な役割を果たすと言われているMet44・Met47もこの中には含まれる。

 さらに新規知見として、エノラーゼ代謝酵素において高度に保存されているMet169が反応点として同定された。このMetの機能を調べるべく、酵母エノラーゼ(Met171が相当部位)をクローニングし、Met171を次亜塩素酸で酸化するとin vitro酵素活性が有意に下がることが分かった(一方で、M171L変異体を同様に酸化処理しても酵素活性は変化しない)。またエノラーゼM171L変異体を発現した細胞株は、酸化ストレス細胞死に対して強いことも分かった。これらの結果より、エノラーゼでは酵素活性のレドックス制御にMetが関わっていること、in vivoでもその情報が通用しうる可能性が示唆された。

議論すべき点

  • 試薬調製過程に強酸化剤と脱水条件が必要(下図)なので、酸化とオキソフィリックなルイス酸に敏感な原子団を搭載した試薬は合成できない。おそらく含プロトン基質や含アミン基質にも制限がある。この事情からClick反応のアンカー(アジド・アルキン)導入にのみ形式が限られる。ADCのPayloadやビオチンなどは後付けでの導入手順が必要となる。
  • システイン・セレノシステイン以外の交差反応性はほぼないと書かれているが、実際にはアミン含有基質(Arg, Lys, His, Trp)単独とは1~5%収率にて反応しうる。長時間(1 h)反応では、N末のアミンが32%修飾される。Metに対する反応性が特別高いので、事実上問題ないとの解釈はできそう。
  • Covalent阻害剤への展開が将来像として最後に触れられているが、おそらく細胞内(還元的環境下)で使うには相応の改良が必要になる。試薬がCysを二量化させてシスチンにしてしまうことからも、mMオーダーで存在する細胞内グルタチオンと容易に反応しうることが予想される。
  • Supporting Infoを読む限り、もともとは金属ナイトレニドの化学をメチオニン修飾に適用しようと考えていた香りが嗅ぎ取れる(オキサジリジンよりも広く使われるナイトレニド前駆体(TsI=NPhやBocN3)に金属触媒を加える系で検討していた形跡がある)。
  • 当量のベンズアルデヒドがリリースされるが、ここを配列認識部位や低分子リガンドの導入部位と捉えることができれば、位置選択的Met修飾Ligand-Directed Chemistryにも展開できる可能性がある。

次に読むべき論文は?

  • メチオニンの翻訳後修飾・変異が生体内でどのような意味合いを持っているかを述べている論文。
  • タンパク質生体共役反応をプロテオミクス技術の拡張に応用している事例。特にLys, Cys以外の残基を狙う利点について触れる文献。
  • 活性ベースプロテオミクスへ新たな生体共役反応がどのように貢献できるかを示した論文もしくは総説。

参考文献

  1. (a) Gundlach, H. G.; Moore, S.; Stein, W. H. J. Biol. Chem. 1959, 234, 1761. (b) Kramer, J. R.; Deming, T. J. Chem. Commun. 2013, 49, 5144. DOI: 10.1039/C3CC42214C
  2. (a) Armstrong, A.; Edmonds, I. D.; Swarbvrick, M. E. Tetrahedron Lett. 2003, 44, 5335. doi:10.1039/C5CS00208G (b) Bizet, V.; Hendriks, C. M. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378. DOI: 10.1039/C5CS00208G
  3. (a) Speers, A. E.; Cravatt, B. F. J. Am. Chem. Soc. 2005, 127, 10018. DOI: 10.1021/ja0532842 (b) Weerapana, E.; Speers, A. E.; Cravatt, B. F. Nat. Protoc. 2007, 2, 1414. doi:10.1038/nprot.2007.194
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学系必見!お土産・グッズ・アイテム特集
  2. 「糖鎖レセプターに着目したインフルエンザウイルスの進化の解明」ー…
  3. ハラスメントから自分を守るために。他人を守るために【アメリカで …
  4. 【書籍】合成化学の新潮流を学ぶ:不活性結合・不活性分子の活性化
  5. フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに…
  6. 2009年イグノーベル賞決定!
  7. ChemTile GameとSpectral Game
  8. 塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

注目情報

ピックアップ記事

  1. 第28回 錯体合成から人工イオンチャンネルへ – Peter Cragg教授
  2. 含フッ素遷移金属エノラート種の合成と応用
  3. 韮崎大村美術館
  4. 「抗炎症」と「抗酸化」組み合わせ脱毛抑制効果を増強
  5. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  6. PACIFICHEM2010に参加してきました!③
  7. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎と煙と轟音の科学実験54』
  8. 個性あるジャーナル表紙
  9. ベン・クラヴァット Benjamin F. Cravatt III
  10. 掟破り酵素の仕組みを解く

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー