[スポンサーリンク]

化学者のつぶやき

「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾

[スポンサーリンク]

タイトルで完全にネタバレですが、少し前にScience誌にラジカル反応を用いたタンパク質の翻訳後修飾についての論文が同時に2報発表されました。

A chemical biology route to site-specific authentic protein modifications

Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H.-Y.; Park, H.-S. Science, 2016, 354, 623. DOI: 10.1126/science.aah4428

Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity

Wright, T. H.; Bower, B. J.; Chalker, J. M.; Bernardes, G. J. J.; Wiewiora, R.; Ng, W.-L. L.; Raj, R.; Faulkner, S.; Vallée, M. R.; Phanumartwiwath, A.; Coleman, O. D.; Thézénas, M.-L. L.; Khan, M.; Galan, S. R. R.; Lercher, L.; Schombs, M. W.; Gerstberger, S.; Palm-Espling, M. E.; Baldwin, A. J.; Kessler, B. M.; Claridge, T. D.; Mohammed, S.; Davis, B. G. Science 2016, 354. DOI: 10.1126/science.aag1465

以前にもケムステでは同じような「同時多発研究」を紹介していますが(C-CN結合活性化を介したオレフィンへの触媒的不斉付加超一流化学者の真剣勝負が生み出した丸かぶり論文)、この手の話を聞くと毎回ぞっとしますね。さて早速ですが内容に移っていきましょう。

人工的なタンパク質の翻訳後修飾法

タンパク質はDNAからRNAへの転写、RNAからの翻訳により合成されます。その後合成されたタンパク質は、糖鎖付加やリン酸化、メチル化などの化学的な修飾が施されることで、タンパク質に機能を付与したり、活性調節を行ったりします。これを翻訳後修飾と言います。

このように生命現象に深く関与している翻訳後修飾の研究は盛んに行われており、とりわけ翻訳後修飾タンパク質の合成が、生化学的な手法、合成化学的な手法を用いて行われています1。しかしながら現在までに合成できる翻訳後修飾タンパク質は限定的です。

デヒドロアラニンを経由した化学的修飾法

例えば、翻訳後修飾タンパク質の合成法における一つの大きな流れとして、デヒドロアラニン(Dha)を経由したタンパク質への化学的修飾法が挙げられます。すなわちシステインやセリンなどをDhaに誘導後、種々の求核剤を作用させることで、人工的に翻訳後修飾されたタンパク質が合成できます。しかしながら問題点として、求核剤の多くがチオールであり、反応後には必ずチオエーテル部位が残ってしまいます。そのため、自然界で見られるようなnativeな翻訳後修飾を再現することができません。

デヒドロアラニンとチオールとのマイケル付加反応による翻訳後修飾タンパク質の合成 (ref 2の図より引用)

二つのグループが取った戦略-デヒドロアラニンに対するラジカル反応を用いたC–C結合形成!

従来法では合成困難であったnativeな翻訳後修飾を達成すべく立ち上がったのは、KAISTのProf. ParkとProf. Lee、そしてYale大学のProf. Söllがタッグを組んだグループと、デヒドロアラニンを経由したタンパク質の翻訳後修飾法の開発で著名なオックスフォード大学のDavisらのグループです。

そして奇しくも2グループともデヒドロアラニンに対するラジカル反応を用いたC–C結合形成というアプローチを採用しました。本手法を用いれば反応後に不要なチオエーテル結合が残りません。以下に今回の2グループが行った方法の全体像を示します。

二つのグループが行った方法の全体像。それぞれの条件は異なるものの戦略は全く同じ (ref 3の図より引用)

デヒドロアラニン合成に関してはDavisらは独自に開発した方法を、Parkら合同チームはホスホセリンに塩基を作用させる方法を採用しています。このデヒドロアラニン合成に関してはこれまでに種々の報告がなされているため、今回は説明をこちらの総説2に任せて、詳細は割愛させてもらいます。

さてラジカル反応の条件に関してです。Davisらはデヒドロアラニンに対してZnとヨウ化アルキルを作用させたところ、予想通りC–C結合形成反応が進行しました。しかしながら副生成物としてジアルキル化および酸素と反応して生成したと考えられる物が得られてしまいます(下図参照)。そこで種々検討した結果、ラジカル発生剤をZnからNaBH4に変更し、反応をグローブボックス内において行うことで綺麗に反応が進行することがわかりました。相当な条件検討があったことが伺い知れますね。それに対してParkら合同チームはNaBH4の代わりにZnと酢酸銅を合わせ用いることでラジカル反応が良好に進行することを見出しました。

Davisらの方法で得られた副生成物 (Supporting Informationより引用)

どちらの方法が有用なのか

さて、結局のところどちらの方法が優れているのでしょうか?Davisらは見出した方法で合計8種類の翻訳後修飾されたタンパク質の合成をおこなっており、一方、Parkら合同チームは3種類のタンパク質を合成しています。合成した数だけで言えばDavisらに軍配が上がりますが、それだけでどちらが優れているというのを判断するのは難しいですね。しかし一つ言えることは、これら二つの方法を用いることで、我々は10種類ものタンパク質に対して翻訳後修飾することが可能になったということです。

今回の手法で合成した翻訳後修飾タンパク質 (ref 3の図より引用)

 

おわりに

途中で気づいた方も多いかもしれませんが、今回の記事の図はBodeらによる解説記事3から多く引用させていただきました。より詳細な内容が気になる方はこのBodeらによる解説記事および原著論文を合わせて読んでみていただけたらと思います。

今回紹介した人工的なタンパク質の翻訳後修飾法を用いることで、さらなる生命現象の解明がなされることを期待したいです。と思うのと同時に、このような「同時多発研究」で競り負けないように実験がんばろう!と思いました。

という感じでこの記事を締めたいと思います。

 

参考文献

  1.  Genetic code expansion: Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G. Science1989244, 182. DOI: 10.1126/science.2649980 Protein synthesis: Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science, 1994, 266, 776. DOI: 10.1126/science.7973629 Chemical mutagenesis: Simon, M. D.; Chu, F.; Racki, L. R.; de la Cruz, C. C.; Burlingame, A. L.; Panning, B.; Narlikar, G. J.; Shokat, K. M. Cell, 2007,128, 1003. DOI: 10.1016/j.cell.2006.12.041
  2. Chalker, J.; Gunnoo, S.; Boutureira, O.; Gerstberger, S.; Fernández-González, M.; Bernardes, G.; Griffin, L.; Hailu, H.; Schofield, C.; Davis, B. Chem Sci, 2011, 2, 1666. DOI: 10.1039/c1sc00185j
  3. Hofmann, R.; Bode, J. W. Science, 2016, 354, 553. DOI: 10.1126/science.aai8788

Avatar photo

goatfish

投稿者の記事一覧

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. 最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化すること…
  2. 日本化学会と対談してきました
  3. 化学オリンピックを通して考える日本の理科教育
  4. メタロペプチド触媒を用いるFc領域選択的な抗体修飾法
  5. 水入りフラーレンの合成
  6. 宇宙に漂うエキゾチックな星間分子
  7. 文具に凝るといふことを化学者もしてみむとてするなり : ③「ポス…
  8. 分子集合体がつくるポリ[n]カテナン

注目情報

ピックアップ記事

  1. “かぼちゃ分子”内で分子内Diels–Alder反応
  2. グローバルCOE審査結果
  3. グリコシル化反応を楽にする1位選択的”保護”反応
  4. 初めての減圧蒸留
  5. トランス効果 Trans Effect
  6. 有機合成研究者必携! 有機合成用反応剤プロトコル集
  7. ルイスペア形成を利用した電気化学発光の増強
  8. アスピリン あすぴりん aspirin 
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答編)
  10. サントリー白州蒸溜所

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP