創薬研究における化学の役割といえば皆さん何を浮かべますか?私は化合物の合成、供給が大きな割合を占めていると思います。目的のタンパク質にどれだけ特異的に、そして強く相互作用する分子を見出すことが、化学が一番寄与してきたことであるのは疑いのない事実です。今回紹介する論文はこのような従来の化学の力を用いて創薬分子を見つけるのではなく、創薬ターゲットになりうるタンパク質を網羅的に見つけるというコンセプトです。
私たち人間のタンパク質には低分子のリガンドがない”undruggable”と見なされているタンパク質群が複数存在します。Cravattらは独自に確立したisoTOP-ABPP (isotopic tandem orthogonal proteolysis-activity-based protein profiling)[1]を用いて、共有結合性リガンドを有するタンパク質を網羅的に探索しています。
Proteome-wide covalent ligand discovery in native biological systems
Backus, K.; Correia, B.; Lum, K.; Forli, S.; Horning, B.; González-Páez, G.; Chatterjee, S.; Lanning, B.; Teijaro, J.; Olson, A.; Wolan, D.; Cravatt, B. Nature 2016, 534, 570. DOI: 10.1038/nature18002
今回は本論文について紹介したいと思います。
Activity-Based Protein Profiling (ABPP)[2]とは
近年、プロテオミクス技術の発展に伴い、同時に大量のタンパク質を網羅的に解析できるようになりました。その反面それぞれのタンパク質の活性をつぶさに調べることは困難です。ABPPはそのような大量のタンパク質解析の中で活性な酵素の挙動を観測できる方法です。まず、酵素と反応する”Reactive group”と蛍光分子やビオチンといった”タグ”を有するABPPプローブをタンパク質に作用させます。すると活性な酵素だけプローブと反応し、プローブについたタグをもとに解析を行うことで反応した酵素を解析することができます。この方法を用いれば、ある疾患における酵素の活性化の有無や酵素の阻害剤解析などに応用することができます。
isoTOP-ABPP (isotopic tandem orthogonal proteolysis-activity-based protein profiling)とは
それに対して今回用いられているisoTOP-ABPPは質量分析を用いて定量的な比較ができるABPPの手法です。質量分析は測定ごとの誤差が大きいため、それぞれのサンプルを別々に測定してもサンプル間の定量比較はできません。そこで二つのサンプルの内、片方に同位体を導入することで、二つのサンプルを混ぜ合わせて同時に測定することが可能になります。このような一回の測定なら定量比較が可能となります。考え方としてはSILAC法と同じなので知っている方は以下の原理説明は読み飛ばしてください。
原理は二つのサンプルに対して、同位体標識(13C, 15N)された“重い(Heavy)”アミノ酸、通常の12C, 14Nで構成される“軽い(Light)”アミノ酸をそれぞれ結合させます。その後それら二つのサンプルを混ぜます。混ぜたサンプルを種々の処理を行った後、LC-MS/MS測定を行うと、同じタンパク質でも重いアミノ酸で標識されたものと軽いアミノ酸で標識されたものが違う分子量で観測することができます。これらのピーク強度を見積もることで二つのサンプルの定量比較が出来ます。この定量解析法とABPPを合わせ用いたものがisoTOP-ABPPです。
Cys-reactiveなリガンド分子が結合するタンパク質を見つける
今回筆者らはisoTOP-ABPP を用いてCys-reactiveなリガンド分子が結合するタンパク質の探索を行っています。まずCys-reactiveな化合物(クロロアセチル基やα,β-不飽和カルボニル)を作用させたものとコントロールとしてDMSOを作用させたサンプルを調製します。その後アルキンを有するヨードアセトアミドを作用させます。つまりここでCys-reactiveなプローブと反応しなかったタンパク質にアルキンが導入されます。続いてヒュスゲン環化反応でABPPのサンプルに放射性同位体標識された”軽い(light)”バリンを、コントロールサンプル(DMSO)には”重い(heavy)”バリンを結合させます。これらサンプルを混ぜて質量分析を行い、heavyに比べてlightのピーク強度比が小さいタンパク質ほどCys-reactiveなプローブと多く結合しているということが示されます。
筆者らはisoTOP-ABPPを用いて637ものCys-reactiveなリガンド分子が結合するタンパク質を見出しました。また驚くべきことにその637のうち86%にあたる545のタンパク質がDrugBank(薬および薬のターゲットタンパク質のデータベース)に載っていないものであるとわかりました!つまり今まで創薬ターゲットとしてみなされていなかったタンパク質を網羅的に見つけることに成功しました。本論文ではそれぞれの化合物のタンパク質選択性や本手法の妥当性などを議論しているので興味がある方は読んでみていただけたらと思います。
おわりに
今回紹介した方法は今まで創薬ターゲットとみなされていなかったタンパク質を見つけ出す、非常に革新的な報告であると思いました。しかしながら気をつけなければいけないのが、今回見つかった全てのタンパク質が創薬ターゲットになるわけではないということです。とはいえこの方法で見出したタンパク質は結合する化合物の構造が分かっているため、創薬研究に繋げやすいのはいうまでもありません。今後の創薬研究への応用に期待しましょう。
参考文献
[1](a)Weerapana, E.; Wang, C.; Simon, G.; Richter, F.; Khare, S.; Dillon, M.; Bachovchin, D.; Mowen, K.; Baker, D.; Cravatt, B. Nature 2010, 468, 790. DOI: 10.1038/nature09472 (b)Wang, C.; Weerapana, E.; Blewett, M.; Cravatt, B. Nat Methods 2014, 11, 79. DOI: 10.1038/nmeth.2759 [2] (a)Cravatt研HP (b) Jessani, N.; Cravatt, B. Curr Opin Chem Biol, 2004, 8, 54. DOI: 10.1016/j.cbpa.2003.11.004関連書籍
関連リンク