植物由来の天然物は、微生物等に比べ生合成経路の解明が困難です。いくつか理由はありますが、ゲノムサイズが大きすぎるためにゲノム配列の解読が困難な場合があることや、生合成遺伝子がクラスターを形成していないこと、成長が遅いこと、実験プロトコルが植物種ごとに異なる場合があることなどが挙げられます。その研究の難しさはルービックキューブを解くことに例えることができます。
植物科学研究で有名なイギリスのジョイネスセンターのサラ・オコナー教授らのグループらは、長年にわたりニチニチソウ(Catharanthus roseus)の研究を行ってきました。ニチニチソウからは複数のアルカロイドが単離されており、天然物化学者のみならず、合成化学者からも注目を集めていました。今回、サラ・オコナー教授らのグループによる「ヘテロヨヒンビンの生合成経路での構造多様性に関わる酵素の機能解析」に関する研究が報告されましたので、本記事ではその詳細について解説したいと思います。
Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity
Nat. Comm. 2016, 7, Article number: 12116 DOI: 10.1038/ncomms12116
コンテンツ
非常に長い記事になってしまったため、今回は目次を付けました。(クリックするとその項目まで移動します。)
- ヘテロヨヒンビン
- Tetrahydroalstonine synthase(THAS)
- Heteroyohimbine Synthase(HYSs)
- X 線結晶構造解析
- 反応機構
- 細胞内局在
- HYS のサイレンシング
- 参考文献
- まとめ
ヘテロヨヒンビン
ヘテロヨヒンビンは植物由来のモノテルペンインドールアルカロイドであり、主にキョウチクトウ科(Apocynaceae) や アカネ科 (Rubiacea) から単離報告例があります。ヘテロヨヒンビンは複数のキラル中心を有するため複数の光学異性体が存在し、それぞれが異なる生理活性を示すことが知られています。
例えば、ajimalicineは、α1アドレナリン受容体のアンタゴニストとして働くため、高血圧治療薬として用いられています。mayumbine はベンゾジアゼピン受容体リガンドです。より酸化された serpetine はトポイソメラーゼ阻害作用を示し、alstonine は、5-HT2A/C 受容体と相互作用することが知られています。さらに、ヘテロヨヒンビンは多様な生理活性を有するオキシインドールアルカロイド類 (oxindole alkaloid) の生合成中間体でもあるため、ヘテロヨヒンビンの生合成研究は医薬化学の面からも大変重要と考えられており、今後の研究が待たれているのが現状です。
ヘテロヨヒンビンには 4 箇所のキラル中心があるため理論上 16 種類の光学異性体が考えられますが、これまでのところ 8 種類の光学異性体しか報告されていません。論文著者らは、この立体化学の制御が植物体内でどのように制御されているかに興味を抱き研究を行いました。
コンテンツに戻る
Tetrahydroalstonine synthase(THAS)
ニチニチソウ(Catharanthus roseus)は、ヘテロヨヒンビンの複数ある光学異性体のうちの 3 種を生産します(ajmalicine, tetrahydroalstonine, mayumbine)。
植物が生産するいくつかの種類のモノテルペンインドールアルカロイドは、 strictosidine を共通中間体として生合成されています。そのため、strictosidine を基質として受け入れる酵素が数種類存在し、どの酵素が働くかによって分子多様性が生み出されている考えられます。著者らは先行研究にて strictosidine のアグリコンを基質として tetrahydroalstonine を合成する酵素である THAS (tetrahydroalstonine synthase) の単離・機能解析を報告していますが、その立体制御に関するメカニズムについては謎のままでした。
ヘテロヨヒンビンには 8 種類の異性体が存在しているため、それぞれの生成物に対応した THAS のホモログ酵素が存在すると予想することができます。すなわち、他の THAS の立体制御のメカニズムを比較・解明することができればヘテロヨヒンビンの立体制御の仕組みがわかると著者らは考えました。
Heteroyohimbine Synthase(HYS)
著者らは、ニチニチソウ(Catharanthus roseus)のトランスクリプトーム解析を行い、THAS のホモログを探索し、14 個の候補遺伝子を見つけました。それらを大腸菌で異種発現し、代謝物を LC-MS で解析したところ、4 つの酵素が活性を示しました。これら 4 つの酵素は、それぞれTHAS2, THAS3, THAS4, HAS と名付けられました。THAS2, THAS3, THAS4 が Tetrahydroalstonine を主生成物とし、mayumbine を 副生成物 として与えるのに対し、HYS は Tetrahydroalstonine、Ajmalicine、Mayumbine の 3 種の化合物の mixture を生成物として与えました。すなわち、立体制御機構が比較的ゆるい HYS と他の酵素の違いを注意深く調べることにより、ヘテロヨヒンビン生合成における立体制御機構がわかると予想されました。そこで、酵素の詳しい反応メカニズムを調べるために、著者らは X 線結晶構造解析に着手しました。
X 線結晶構造解析
a は、NADP+ が結合したホロ体の THAS1(分解能 1.12 Å)。
b は、THAS1 に基質である cathenamine を重ね合わせたもの(分解能 1.05 Å)。
c は、何も入っていないアポ体の HYS, THAS1, THAS2 の結晶を重ね合わせたもの(分解能 2.25 Å, 2.25 Å, 2.05 Å)。
d は、NADP+ が結合したホロ体の THAS1 と THAS2 を重ね合わせたもの(分解能 1.05 Å, 2.10 Å)。
X 線結晶構造に基質である cathenamine を重ね合わせる操作は、Auto Dock を使って行われました。NADPH 由来のヒドリドが C21 位に付加するのが今回の立体制御の一つのポイントです。C21 位は不斉点ではありませんが、酵素活性部位において NADPH が基質の下部または上部のどちらかにあるかによって、反応に関与するアミノ酸残基がまるっきり変わってしまい、酵素間の比較ができなくなってしまうためです。著者らは NADPH と重水素化した NADPD を用いた場合の生成物の NMR スペクトルを比較することにより C21 位の α と β のどちらの水素が重水素化されているかを決めました。その結果、ajimalicine、Mayumbine、Tetrahydroalstonine のいずれの場合も α 位が重水素化されていました。すなわち、NADPH は、基質の下部にあることが明らかとなり、このことから C20 位のプロトン化が立体化学の制御に重要であることが示唆されました。
コンテンツに戻る
反応機構
HYS と HTAS1 の X 線結晶構造の比較により、酵素活性部位上部の loop の大きさに差があることがわかりました。そこで、著者らは swap mutant を作りました。swap mutant とは、酵素の一部分をある酵素間で入れ替える変異体です。今回の場合では、HYS の loop の配列と THAS1 のloop の配列を入れ替えます。機能解析の結果、HYS にTAHS1 の loop2 を導入したものの代謝物が THAS1 の野生体と非常によく似ていることがわかりました。これは、loop2 に含まれる極性アミノ酸残基が C20 位のプロトン化に関与していることを示しています。次に、point mutation により プロトン受け渡しに関与していそうなアミノ酸残基を一つずつ潰していきました。すると、 His127 が ajimalicine には必須であることがわかり、以下のような反応機構が考えられました。
細胞内局在
生合成反応では、タンパク質間相互作用により基質(生成物)を素早く次の酵素へと受け渡すことにより副反応を避けたり、細胞内局在を調節することにより副反応を避ける仕組みがあります。ヘテロヨヒンビンの先行研究では strictosidine の脱配糖化酵素 SGD は、核内に存在していることが示されていました。今回は、THAS2 と HYS の細胞内局在が調べられました。YFP とのフュージョンプロテインにより、THAS2 と HYS は核内にて SGD と相互作用していることが確かめられました。
HYS のサイレンシング
上述したように、著者らはヘテロヨヒンビンに関わっているであろう酵素の in vitro での解析を進めてきました。しかし、これらの酵素が実際に植物内で発現しているかどうかは、遺伝子破壊またはサイレンシングの実験を行わないとわかりません。今回使用している植物 C. roseus では VIGS (virus-induced gene silincing) しか確立した実験方法がありませんので、著者らは VIGS を用いてそれぞれの候補遺伝子のサイレンシングを行いました(植物では主にシロイヌナズナをモデルとして様々な手法が開発されているが、それが他の植物種では使えない場合も多い)。サイレンシングを行うと、 HYS または THAS1 をサイレンシングした時に顕著に ajimalicine の生産量が低下することがわかりました。このことから HYS と THAS1 が ajimalicine の生合成に関与していることが示されました。しかし、一つ疑問が残るのは、トランスクリプトーム解析では HYS の発現量は高くないということです。。。
まとめ
本研究にて著者らは、トランスクリプトーム解析、X 線結晶構造解析などを軸として酵素の機能解析を進め、ヘテロヨヒンビンの構造多様性の仕組みの一部を明らかにしました。この技術を応用していくことにより、他の異性体の生合成に関わる酵素も見つかるかもしれません。また、蓄積した知見をもとにした変異体酵素の構築により、未だ単離例のない異性体の生成も達成できるかもしれません。
今後の展開が楽しみです。