[スポンサーリンク]

化学者のつぶやき

多置換ケトンエノラートを立体選択的につくる

[スポンサーリンク]

 

α位に異なる二つの置換基をもつエノラートは、カルボニル化合物やイミン等の求電子剤への付加や、O-アリル化に続くClaisen転位反応によって不斉四級炭素を構築できるため、合成的価値が高い合成反応です(図 1)。

2016-07-27_18-12-21

図1. α,α-二置換エノラートからの四級炭素の構築法

 

これらの反応は四級炭素の不斉点構築の際、エノラートの立体化学 (E体/Z体)が生成物の立体化学に反映されます。そのため、エノラートの立体化学を制御できる多置換エノラートの発生方法をめぐって数多くの研究が行われてきました。現在、エステルおよびアミドエノラートの立体選択的合成はキラルな塩基、配向基を用いたエステル、アミドのα水素の立体/ジアステレオ選択的脱プロトン化によって達成されています[1]

ところが多置換ケトンエノラートの立体選択的合成は脱プロトン化によるエノラート形成の際の立体選択性に加え、位置選択性の制御も必要となるためいまだ困難な課題とされています(図2)。

2016-07-27_18-12-49

図2. ケトンの脱プロトン化を経由したケトンエノラートの合成

 

まず、これまでに報告されたケトンエノラートの立体選択的合成法について紹介します。

(a)α水素を一種類しかもたないケトンの脱プロトン化(図 3)

フェニルケトンやt-ブチルケトンはα-水素を一種類しかもたないため、エステルやアミドと同様に脱プロトン化は位置選択的に進行します。これらに対してLDAなどを作用させた場合、6員環遷移状態を経由する立体選択的な脱プロトン化によってE体/Z体を制御したケトンエノラートの調製が可能です。しかし、この手法はフェニルケトンやt-ブチルケトンなどの限られた基質しか適応できないことや生成物の立体化学は基質の置換パターンに依存するといった問題点があります。

 

2016-07-27_18-13-29

図3. LDAによる脱プロトン化を使った立体選択的なエノラートの合成法

 

(b)反応系中で発生させたケテン中間体へのアルキルリチウム試薬の付加(図 4)

1985年にSeebachらは反応系中で発生させたケテン中間体に対してアルキルリチウム試薬を付加させることによって二置換ケトンエノラートを合成可能であることを報告しています[2]。この手法ではR3の置換基としてメチル基やn-ブチル基などの一級アルキル基を有するエノラートの合成が可能です。また、アルキルリチウム試薬のケテン中間体への求核攻撃はより立体障害の小さい面から進行するため、生成するエノラートの立体化学も基質の置換パターンに依存します。

2016-07-27_18-13-52

図4. ケテン中間体を経由した立体選択的なエノラートの合成法

 

(c) 二置換エノールカルバマート誘導体を出発原料とした三置換エノラートの合成法(図5)

2016-07-27_18-14-13

図5.二置換エノールカルバマート誘導体を出発原料とした三置換エノラートの合成法

一方で、最近、イスラエル工科大学のMarek教授らは、O-アルキニルカルバマートから容易に調製可能な二置換エノールカルバマート誘導体を出発原料とすることで、様々な三置換ケトンエノラートを立体選択的かつOne-potで合成可能な新手法を報告しました(図5)。

Haimov, E.; Nairoukh, Z.; Shterenberg, A.; Berkovitz, T.; Jamison, T. F.; Marek, I.;Angew. Chem. Int. Ed.  2016, 55, 5517.

DOI: 10.1002/anie.201601883

 

今回はこの報告について、少しだけ詳細にみてみることにしましょう。

 

合成戦略

立体選択的三置換ケトンエノラートの合成戦略を以下に示します(図 6)。

  1. エノールカルバマート誘導体1のα位の脱プロトン化によりアルケニル金属種2を生成
  2. アルケニル金属種2のアルデヒドに対する求核付加反応によりアリルアルコキシド3を生成
  3. アリルアルコキシド3のカルバモイル基がアルコキシド部位へ移動し、目的の立体制御された三置換ケトンエノラート4を形成
2016-07-27_18-14-35

図6. エノラート合成戦略

 

生成する三置換ケトンエノラート4の立体化学は出発物質であるエノールカルバマート誘導体1の立体化学が反映されます。このエノールカルバマート誘導体1は適切なO-アルキニルカルバマートとアルキル銅試薬を用いることによって立体選択的に調製可能であるため(図 7)[3]、様々な三置換ケトンエノラートの立体選択的合成が可能となりました。

2016-07-27_18-15-01

図7. O-アルキニルカルバマートからのエノールカルバマートの合成

 

Marek教授らは本手法とMannich反応を組み合わせることによって四級炭素を有する化合物のジアステレオ選択的なOne-pot合成に成功しています(図 8)。本反応の特筆すべき点はジアステレオ選択的な四級炭素の構築が可能であることに加えて、カルバモイル基を配向基とすることによって、計三つの立体中心の相対立体配置を制御していることです(TS1)。簡便なOne-pot合成によって二つの炭素-炭素結合と三つの立体中心を構築できることは合成化学上大きな利点です。

2016-07-27_18-15-23

図8. マンニッヒ反応と組み合わせる

 

この三置換ケトンエノラートの立体選択的合成法で発生させたエノラートはMannich反応やシリル化に続く向山Aldol反応による不斉四級炭素の構築に適応可能であり、今後合成化学分野において幅広い応用が期待されます。

 

参考文献

  1.  (a) Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774. DOI: 10.1021/ja800435j (b)Kummer, D. A.; Chain, W. J.; Morales, M. R.; Quiroga, O.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 13231. DOI: 10.1021/ja806021y
  2. Haner, R.; Laube, T.; Seebach, D. J. Am. Chem. Soc. 1985, 107, 5403. DOI: 10.1021/ja00305a014
  3. Chechik-Lankin, H.; Marek, I. Org. Lett. 2003, 5, 5087. DOI: 10.1021/ol036154b

 

関連書籍

[amazonjs asin=”3527334521″ locale=”JP” title=”Modern Enolate Chemistry: From Preparation to Applications in Asymmetric Synthesis”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. おまえら英語よりもタイピングやろうぜ ~中級編~
  2. 海外機関に訪問し、英語講演にチャレンジ!~② アポを取ってみよう…
  3. 化学者のためのエレクトロニクス講座~無電解貴金属めっきの各論編~…
  4. 電子デバイス製造技術 ーChemical Times特集より
  5. クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発…
  6. 【解ければ化学者】オリーブオイルの主成分の素はどれ?【脂肪の素っ…
  7. 2010年ノーベル化学賞予想―トムソン・ロイター版
  8. 世界が終わる日までビスマス

注目情報

ピックアップ記事

  1. 2007年度ノーベル化学賞を予想!(3)
  2. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  3. 一流科学者たちの経済的出自とその考察
  4. 天野 浩 Hiroshi Amano
  5. ラリー・オーヴァーマン Larry E. Overman
  6. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  7. 第15回光学活性シンポジウム
  8. 血液型をChemistryしてみよう!
  9. 続セルロースナノファイバーの真価【対面講座】
  10. 還元的脱硫反応 Reductive Desulfurization

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー