[スポンサーリンク]

スポットライトリサーチ

1つの蛍光分子から4色の発光マイクロ球体をつくる

[スポンサーリンク]

第53回のスポットライトリサーチは、筑波大学院数理物質科学研究科 物性・分子工学専攻 博士課程1年の岡田大地さんにお願いしました。岡田さんが所属する山本研究室では、π共役分子や生体分子からなる超分子ナノ構造体の構築と、それらの光電子機能やエネルギー変換に関する研究を行っています。今回紹介する成果は、複数の発光パターンを持つポリマー球体の合成に関するものであり、ACS Nanoおよびプレスリリースに報告されました。

“Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade”
Daichi Okada, Takashi Nakamura, Daniel Braam, Thang Duy Dao, Satoshi Ishii, Tadaaki Nagao, Axel Lorke, Tatsuya Nabeshima, and Yohei Yamamoto, ACS Nano 2016, 10, 7058. DOI: 10.1021/acsnano.6b03188

また、研究室の主宰者である山本洋平先生から、本論文の第一著者である岡田さんについて、以下のようにコメントをいただいています。

「岡田大地君は、ダンスとバスケと筋トレが大好きな、マッチョ系の学生です。研究に関しても持ち前の体力を存分に発揮し、気づかないうちに実験結果をだしているという凄腕の持ち主です。研究者としての資質は十分持ち合わせていると思うので、今後の成長を大きく期待しています。」

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

単一の蛍光色素を用い、緑、黄、橙、赤の発光色を示すマイクロサイズのポリマー球体を作成しました。この特殊な発光パターンは、色素分子の初期濃度の違いにより、色素の凝集状態が変化することで生じます。またこのポリマー球体で生じた発光は球体内部に閉じ込められ、自己干渉により光が共鳴し、特異な発光スペクトル(“ささやきの回廊”発光)を示します。そこで、球体同士を連結し、一端を光励起したところ、光エネルギーが接点を介して隣の球体に伝わり、発光波長が変換されることを見出しました。原理的には、共振器内部に閉じ込められた光による共鳴エネルギー移動(FRET)といえますが、通常のFRETは移動距離が10 ナノメートル程度であるのに対し、光を共振器内部に閉じ込めることで数マイクロメートル(数百倍!)にわたり光エネルギーを伝えることができます。

岡田大地fig1

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

発光色の異なる球体を望みの配列で連結するマニピュレーション操作に、一番思い入れがあります。数ミクロンの球体の微小操作は静電気との戦いで、一つの配列を作るのに数時間かかることもありましたし、数時間かけて作製した連結構造が、最後の最後で壊れてしまうこともあり、とても苦労しました。この実験は、ドイツの共同研究先に一ヶ月間訪問して行いました。初めてのドイツで、いろいろなトラブルに直面しましたが、最終的には納得のいく結果が得られました。

岡田大地fig2

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

マニピュレーターによる球体操作も難しかったのですが、そもそも多色発光自体、実験を進めている中で偶然見つかったもので、はじめはなぜ同一の蛍光色素から異なる発光が生じるのかが分かりませんでした。また、選択的にそれぞれの発光色を示す球体を作成するための手法の探索にも時間を費やしました。様々な析出法を試み、析出条件を細かく調べることで、最終的に望みの発光色を示す球体の選択的な作製方法を見つけました。

 

Q4. 将来は化学とどう関わっていきたいですか?

社会的に影響力があるような研究に携わっていきたいです。自分の専門分野に限らず、多くの研究分野に興味をもち、自分の知識と経験をどんどん増やして、将来の科学の発展のために生かしていきたいです。また、何より研究を楽しむことを大事に、元気に活発に研究に取り組んでいきたいと思います。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

もしどこかで私を見ることがありましたら、「読んだよ!」と声かけて頂けたらとても嬉しいです。偶然見つけた普段とは違う変化や、興味深い現象など、運的な要素での発見というのは、研究を行う上で非常に大切なことだと思います。そのようなきっかけを見逃さず、一度食い付いたら離さない、これが私が山本研究室で学んだことです。エキサイティングな研究を目指して、共に邁進しましょう!

関連リンク

 

研究者の略歴

岡田大地fig3岡田 大地 (おかだ だいち)

所属 筑波大学院数理物質科学研究科 物性・分子工学専攻 博士後期課程1年

日本学術振興会特別研究員 DC1

研究テーマ:蛍光性ポリマー球体によるフォトニック材料の創生

略歴 : 1992年岐阜県多治見市生まれ。2014年筑波大学応用理工学類を卒業後、同年筑波大学院数理物質科学研究科 物性・分子工学専攻(山本研究室)に入学。2016年に博士前期課程を修了し、同年博士後期課程へ進学。

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. タングトリンの触媒的不斉全合成
  2. タンパクの「進化分子工学」とは
  3. ネイチャー論文で絶対立体配置の”誤審”
  4. alreadyの使い方
  5. 若手研究者vsノーベル賞受賞者 【基礎編】
  6. 電子デバイス製造技術 ーChemical Times特集より
  7. ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜
  8. フロー法で医薬品を精密合成

注目情報

ピックアップ記事

  1. バトフェナントロリン : Bathophenanthroline
  2. エレクトロクロミズム Electrochromism
  3. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成
  4. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  5. フロー法で医薬品を精密合成
  6. ペーパーミル問題:科学界の真実とその影響
  7. 熊田誠氏死去(京大名誉教授)=有機ケイ素化学の権威
  8. 中国化学品安全協会が化学実験室安全規範(案)を公布
  9. グラクソ、糖尿病治療薬「ロシグリタゾン」が単独療法無効のリスクを軽減と発表
  10. 【書籍】天然物合成で活躍した反応:ケムステ特典も!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー