[スポンサーリンク]

スポットライトリサーチ

1つの蛍光分子から4色の発光マイクロ球体をつくる

[スポンサーリンク]

第53回のスポットライトリサーチは、筑波大学院数理物質科学研究科 物性・分子工学専攻 博士課程1年の岡田大地さんにお願いしました。岡田さんが所属する山本研究室では、π共役分子や生体分子からなる超分子ナノ構造体の構築と、それらの光電子機能やエネルギー変換に関する研究を行っています。今回紹介する成果は、複数の発光パターンを持つポリマー球体の合成に関するものであり、ACS Nanoおよびプレスリリースに報告されました。

“Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade”
Daichi Okada, Takashi Nakamura, Daniel Braam, Thang Duy Dao, Satoshi Ishii, Tadaaki Nagao, Axel Lorke, Tatsuya Nabeshima, and Yohei Yamamoto, ACS Nano 2016, 10, 7058. DOI: 10.1021/acsnano.6b03188

また、研究室の主宰者である山本洋平先生から、本論文の第一著者である岡田さんについて、以下のようにコメントをいただいています。

「岡田大地君は、ダンスとバスケと筋トレが大好きな、マッチョ系の学生です。研究に関しても持ち前の体力を存分に発揮し、気づかないうちに実験結果をだしているという凄腕の持ち主です。研究者としての資質は十分持ち合わせていると思うので、今後の成長を大きく期待しています。」

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

単一の蛍光色素を用い、緑、黄、橙、赤の発光色を示すマイクロサイズのポリマー球体を作成しました。この特殊な発光パターンは、色素分子の初期濃度の違いにより、色素の凝集状態が変化することで生じます。またこのポリマー球体で生じた発光は球体内部に閉じ込められ、自己干渉により光が共鳴し、特異な発光スペクトル(“ささやきの回廊”発光)を示します。そこで、球体同士を連結し、一端を光励起したところ、光エネルギーが接点を介して隣の球体に伝わり、発光波長が変換されることを見出しました。原理的には、共振器内部に閉じ込められた光による共鳴エネルギー移動(FRET)といえますが、通常のFRETは移動距離が10 ナノメートル程度であるのに対し、光を共振器内部に閉じ込めることで数マイクロメートル(数百倍!)にわたり光エネルギーを伝えることができます。

岡田大地fig1

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

発光色の異なる球体を望みの配列で連結するマニピュレーション操作に、一番思い入れがあります。数ミクロンの球体の微小操作は静電気との戦いで、一つの配列を作るのに数時間かかることもありましたし、数時間かけて作製した連結構造が、最後の最後で壊れてしまうこともあり、とても苦労しました。この実験は、ドイツの共同研究先に一ヶ月間訪問して行いました。初めてのドイツで、いろいろなトラブルに直面しましたが、最終的には納得のいく結果が得られました。

岡田大地fig2

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

マニピュレーターによる球体操作も難しかったのですが、そもそも多色発光自体、実験を進めている中で偶然見つかったもので、はじめはなぜ同一の蛍光色素から異なる発光が生じるのかが分かりませんでした。また、選択的にそれぞれの発光色を示す球体を作成するための手法の探索にも時間を費やしました。様々な析出法を試み、析出条件を細かく調べることで、最終的に望みの発光色を示す球体の選択的な作製方法を見つけました。

 

Q4. 将来は化学とどう関わっていきたいですか?

社会的に影響力があるような研究に携わっていきたいです。自分の専門分野に限らず、多くの研究分野に興味をもち、自分の知識と経験をどんどん増やして、将来の科学の発展のために生かしていきたいです。また、何より研究を楽しむことを大事に、元気に活発に研究に取り組んでいきたいと思います。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

もしどこかで私を見ることがありましたら、「読んだよ!」と声かけて頂けたらとても嬉しいです。偶然見つけた普段とは違う変化や、興味深い現象など、運的な要素での発見というのは、研究を行う上で非常に大切なことだと思います。そのようなきっかけを見逃さず、一度食い付いたら離さない、これが私が山本研究室で学んだことです。エキサイティングな研究を目指して、共に邁進しましょう!

関連リンク

 

研究者の略歴

岡田大地fig3岡田 大地 (おかだ だいち)

所属 筑波大学院数理物質科学研究科 物性・分子工学専攻 博士後期課程1年

日本学術振興会特別研究員 DC1

研究テーマ:蛍光性ポリマー球体によるフォトニック材料の創生

略歴 : 1992年岐阜県多治見市生まれ。2014年筑波大学応用理工学類を卒業後、同年筑波大学院数理物質科学研究科 物性・分子工学専攻(山本研究室)に入学。2016年に博士前期課程を修了し、同年博士後期課程へ進学。

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 最長のヘリセンをつくった
  2. 論文執筆で気をつけたいこと20(1)
  3. V字型分子が実現した固体状態の優れた光物性
  4. 細胞内で酵素のようにヒストンを修飾する化学触媒の開発
  5. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  6. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  7. 研究職の転職で求められる「面白い人材」
  8. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…

注目情報

ピックアップ記事

  1. アルダー エン反応 Alder Ene Reaction
  2. ウイルスーChemical Times 特集より
  3. 2014年ノーベル賞受賞者は誰に?ートムソン・ロイター引用栄誉賞2014発表ー
  4. 第8回 学生のためのセミナー(企業の若手研究者との交流会)
  5. 中国へ講演旅行へいってきました②
  6. 消せるボールペンのひみつ ~30年の苦闘~
  7. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発
  8. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!
  9. キレトロピー反応 Cheletropic Reaction
  10. 親子で楽しめる化学映像集 その2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP