[スポンサーリンク]

化学者のつぶやき

ボリルヘック反応の開発

[スポンサーリンク]

簡便かつ安価に調整可能なcatecholchloroboraneをホウ素化剤に用いた末端アルケンの新しい脱水素型ホウ素化反応(Boryl-Heck 反応)が達成された。置換オレフィンを簡便に合成する溝呂木–Heck反応を位置選択的かつ立体選択的なボリル化に応用した本手法は、これからのアルケニルボロン酸エステルの合成法の一端を担うだろう。

 

アルケニルホウ素化合物とは

アルケニルホウ素化合物、歴史的には鈴木–宮浦クロスカップリング反応の発見によって一躍脚光を浴びた化合物です。その後もスナギンチャクやアオブダイが有する猛毒である、超天然物パリトキシンの全合成の中間体に用いられるなど、幅広く活躍しています[1,2]。近年ではアルケニルボロン酸エステルを用いたC–C, C–O, C–N, C–X (X = halogen)結合形成反応に用いられ、注目を集めています[3]

アルケニルボロン酸エステルは、末端アルキンへのヒドロホウ素化反応によって合成するのが一般的です[4]。最近では出発原料として、より安価で入手容易な末端アルケンを用いた、アルケニルボロン酸エステルの合成法が報告されています。以下に、代表的な例を2つ紹介します。

 

アルケニルホウ素化合物の合成法

(A) オレフィンメタセシスによる合成法

ビニルボロン酸エステルと末端アルケンとのオレフィンメタセシスによりアルケニルボロン酸エステル合成が合成可能です(図1A)。しかし、ビニルボロン酸エステルはホモカップリングが進行しやすい性質を持つため、クロスメタセシスを効率的に行うには、基質のアルケンを過剰量用いる必要があります。

(B) ロジウムやパラジウム触媒を用いたアルケンの脱水素型ホウ素化反応

パラジウム触媒やロジウム触媒存在下、末端アルケンに対してHBpinやB2pin2を作用させることでアルケンの脱水素型ホウ素化反応が進行します(図1B)[5]。安価で入手容易なホウ素化剤を利用できる一方、ヒドロホウ素化や多ボリル化、アルケンの還元など、望まない副反応がしばしば進行してしまうのが難点。

図1. アルケニルボロン酸エステルの合成法

図1. アルケニルボロン酸エステルの合成法

 

これら従来法の問題を解決するため、最近デラウェア大学のWatson教授らは、アルケニルボロン酸エステルの新たな合成法を開発した。すなわち、トリクロロボランおよびカテコールから安価かつ容易に調整可能なcatecholchloroborane(catBCl)を新たなホウ素化剤に用いた、Pd触媒による”ボリルヘック(Boryl-Heck)反応”です。

“Direct Synthesis of Alkenyl Boronic Esters from Unfunctionalized Alkenes: A Boryl-Heck Reaction”

Reid, W. B.; Spillane, J. J.; Krause, S. B.; Watson, D. A. J. Am. Chem. Soc. 2016, 138, 5539. DOI: 10.1021/jacs.6b02914

今回はこの報告について紹介したいと思います。

 

ボリルヘック反応とは

著者らは今回、ヘック反応と同様の触媒サイクルが進行することによって、目的のアルケニルボロン酸エステルが得られるのではないかと予想しています(図2)。

推定反応機構の各段階は次の通り。

  1. catBClのPd0種に対する酸化的付加により、Cl–PdII–B錯体1が生成する。
  2. 末端アルケンが1のPd–B結合へ挿入することにより、Pd錯体2を生じる。
  3. PdII2におけるb-ヒドリド脱離により、H–PdII–Cl錯体3が生成するとともに、目的のアルケニルボロン酸エステルが得られる。
  4. 3から塩化水素の還元的脱離が進行し、Pd0種が再生する。
2016-08-03_18-48-24

図2. 推定反応機構

本反応進行の鍵は、ボリル化剤に用いるcatBClの反応性の制御にあります。以下にその詳細を述べます。

 

ボリルヘック反応の条件最適化

塩基の改良

ヘック反応において塩基として頻繁に見られるNEt3を最初に用いたところ、目的のアルケニルボロン酸エステルは全く得られませんでした。そこで著者らは様々な塩基の検討を行った結果、iPr2NEtやCy2NMeのような嵩高い塩基を用いた場合にのみ目的のアルケニルボロン酸エステルが得られることを見出しました(図3)。

catBClはNEt3と極めて安定な付加体を形成することが報告されています[7]。これを踏まえ、著者らは本反応が進行した理由として、嵩高い塩基を用いることでcatBClへのアミンの付加が可逆反応になったため、catBClのPdへの酸化的付加が進行するようになり、目的化合物が得られるようになったと述べています。

2016-08-03_19-40-01

図3. アミンとボラン付加体

 

配位子の改良

ホスフィン配位子もアミンと同様に付加体を形成し、catBClの分解反応を引き起こします[7]。そこで著者らは、アミンと同様にホスフィン配位子を嵩高くすることでcatBClへの付加の抑制を試みました。様々なホスフィン配位子を検討した結果、配位子L1を用いることで、目的のアルケニルボロン酸エステルが収率良く得られることを見出しました(図4)。

塩基にCy2NMeを、配位子にL1を用いてさらなる条件検討を行った結果、LiOTfを添加剤として加えることで原料のアルケンの異性化を抑制し、目的のアルケニルボロン酸エステルのみを定量的に得ることに成功しました。

2016-08-03_19-40-49

図4 最適反応条件

反応の有用性

最適化条件を基に、基質適用範囲の検討を行った。様々な電子求引基や電子供与基を有する直鎖末端アルケンやスチレン誘導体において本反応は良好に進行します。また、Boryl­-Heck反応後にピナコールやネオペンチルグリコールなどの求核剤を反応させることにより、ワンポットで多様なアルケニルボロン酸エステルへ変換できます。最も特筆すべきは、α-メチルスチレンを基質に用いても本反応が高収率かつE体選択的に進行する点です。目的のアルケニルボロン酸エステルはアルキンのヒドロホウ素化では合成できず、本反応の潜在的有用性を示しています(図5)。

2016-08-03_19-41-12

まとめ

本反応は、入手容易なアルケンを出発物質として用いた効率的なアルケニルボロン酸エステル合成である。さらに安価なcatBClを新たなボリル化剤として用いており、ボリルヘック反応の汎用性を一層高めた新規合成法と言えます。同著者は以前にHeck反応をシリル化にも応用しており、今後どのようなヘック反応のケミストリーが展開されるのか楽しみです。

 

参考文献

  1. For Suzuki–Miyaura coupling see: Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866.  DOI: 10.1039/C39790000866
  2. For the total synthesis of Palytoxin see: Uenishi, J.; Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756. DOI: 10.1021/ja00249a069
  3. (a) Morrill, C.; Grubbs, R. H. J. Org. Chem. 2003, 68, 6031. (b) Shade, R. E.; Hyde, A. M.; Olsen, J.-C.; Merlic, C. A. J. Am. Chem. Soc. 2010, 132, 1202. DOI: 10.1021/ja907982w  (c) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860. DOI: 10.1021/ol901113t (d) Tao, C.-Z.; Cui, X.; Li, J.; Liu, A.-X.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2007, 48, 3525. DOI: 10.1016/j.tetlet.2007.03.107
  4. Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J.-J.; Arseniyadis, S.; Smietana, M. Tetrahedron 2014, 70, 8431. DOI: :10.1016/j.tet.2014.06.026
  5. (a) Selander, N.; Willy, B.; Szabo, K. J. Angew. Chem., Int. Ed. 2010, 49, 4051. (b) Westcott, S. A.; Marder, T. B.; Baker, R. T. Organometallics 1993, 12, 975. DOI: 10.1021/om00027a058 (c) Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Chem. Commun. 2003, 614. DOI: 10.1039/B211789D
  6. Coapes, R. B.; Souza, F. E. S.; Fox, M. A.; Batsanov, A. S.; Goeta, A. E.; Yufit, D. S.; Leech, M. A.; Howard, J. A. K.; Scott, A. J.; Clegg, W.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1201. DOI: 10.1039/B010025K

 

関連書籍

[amazonjs asin=”B00UA7TCNY” locale=”JP” title=”Synthesis and Application of Organoboron Compounds (Topics in Organometallic Chemistry)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. ご注文は海外大学院ですか?〜準備編〜
  2. DeuNet (重水素化ネットワーク)
  3. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合…
  4. 【十全化学】新卒採用情報
  5. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  6. 2004年ノーベル化学賞『ユビキチン―プロテアソーム系の発見』
  7. SlideShareで見る美麗な化学プレゼンテーション
  8. 電流励起による“選択的”三重項励起状態の生成!

注目情報

ピックアップ記事

  1. 蛍光色素を分子レベルで封止する新手法を開発! ~蛍光色素が抱える欠点を一挙に解決~
  2. 先制医療 -実現のための医学研究-
  3. 谷野 圭持 Keiji Tanino
  4. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  5. 日本最大の化学物質データーベース無料公開へ
  6. 金属-金属結合をもつ二核ランタノイド錯体 -単分子磁石の記録を次々に更新-
  7. 菅裕明 Hiroaki Suga
  8. Eリリーの4-6月期は19%減益、通期見通し上方修正
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答編)
  10. メルドラム酸:Meldrum’s Acid

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー