太陽光エネルギーの効率的な変換は21世紀において最も重要な研究テーマの一つであり、世界中で高効率化の競争が行われています。特に人工光合成、つまり水とCO2のみから太陽光エネルギーで有機物に変換する反応はまさに夢の反応の一つです。この反応は世界に先駆けて日本で初めて実証されましたが、残念なことに変換効率は0.04%程度でした。[1]
今回、パーソナライズド・エナジー構想で知られるHarvard大、D. Nocera教授のグループが中心となり、太陽光変換効率が7.1-9.7%でポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを選択的に生成が可能なシステムを開発しScience誌に掲載されました。
“Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213.”
報告された人工光合成の仕組み
今回の報告では2種類の電極(Co-P合金とリン酸コバルト)による水分解によって得られるH2を使い、Ralstonia eutrophaという菌によってCO2を有機物に変換しています。[2] 下の図1に示すように、水分解(H2O => H2 + O2)は陽極側で水が酸化され(2H2O => 4H+ + O2 + 4e–)、この際生じる電子が陰極側へ運ばれH+を還元し水素を生成(4H++4e–=>2H2)します。つまり、水素生成量は回路に流れる電流と相関があり、図2に示すようにCo-P合金は他の電極に比べ(絶対値が)大きい電流が得られており、水素生成活性が高い事が分かります。これによって大量のH2を作り出し、細菌による有機物合成を促進させることができます。また驚くことに、少なくとも16日間はCo-P電極の活性低下はほぼ見られませんでした。
細菌による有機物生成を最大化する
Co-P合金の水素生成活性が高い事は図2に示す通りですが、この電極最大の特徴はH2とCO2から有機物を生成する細菌に対して”優しい”ことです。図1に示す様に陰極でH+が還元されるのですがこれによって水素だけでなく、細菌を殺してしまうH2O2も生成される可能性があります。しかも水素酸化還元電位に対してH2O2生成(4H+ + 4e– + O2 => 2H2O2)の酸化還元電位は+0.5 eVなので、H2O2生成を抑えながらH2を生成するが非常に難しい事が分かります。ところが図3に示すようにCo-P合金電極からは全くH2O2が生成されていません。これによってCo-P電極上の細菌がH2O2によるダメージを受けず、高活性が長期間維持できます。また細菌の種類によりH2とCO2を、ポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを効率40-50%程度で選択的に生成できます。
既存の太陽電池につなげば最大約10%の効率
このシステムにおいて、投入される電気エネルギーに対して得られる有機物の合計エネルギーの割合が最大54%になるので、既存の太陽電池(太陽光変換効率:18%)にこのシステムをつなげば太陽光エネルギーに対して9.7%の効率で有機物が得られます。今後、電極の改良によるさらなる高活性化や細菌の選択による選択性の向上、さらに生成物を連続的に分離できるシステムの開発が期待されます。
参考文献
- Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T. M.; Tanaka, H.; Kajino, T., Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 2011, 133 (39), 15240-15243. DOI:10.1021/ja204881d
- Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213. DOI:10.1126/science.aaf5039