[スポンサーリンク]

一般的な話題

Micro Flow Reactor ~革新反応器の世界~ (入門編)

[スポンサーリンク]

Tshozoです。

ケムステではこれまでに何度かフロー合成()に関して記載がありましたが、今回はもう少し初歩的なところを出発点に書いてみようと思います。お付き合いください。(冒頭図はこちらの論文より)

フロー合成・マイクロリアクターの概要

フロー合成法をざっくり定義すると、「連続的な流れ場において化学反応を進行させ、目的物を合成する方法」のことです。その中でもマイクロリアクターは、より狭い場での反応を利用し、目的物を合成する反応器になります。

FC_09

フローリアクター(左)・マイクロリアクター(右)の例
こちらの資料より引用

なお、これまでの化学界ではバッチ合成が主流。基本はお料理です。素材を順序と火加減を決めてでっかい鍋で煮て、蓋を開けて取り出して、洗って生成物を取り出す。終わったら次のカレー原料を仕込む、というような流れ。これらは条件さえ決まればドカッと楽に目的物が合成出来るうえ、大概の場合装置が安いため、スケールアップのノウハウさえあれば量産化もそれなりに出来るというメリットがありました。

一方、フロー合成。実例が無かったわけではありません。たとえばハーバー・ボッシュ法。ハーバーと助手のル・ロシニョールが創り上げた反応器はまさにフロー合成・フローリアクターのはしりであり、その原型は100年以上も前に萌芽していたわけです。その他、石油化学に近いところやPP、PEといったMass Chemical、つまりプラント稼働率をとにかく上げてコスト競争力を持たせたいようなケースでもフロー合成は使われています。

FC_04

アンモニア合成器 レプリカ(BASFの資料より引用)
ハーバーが行ったこの装置のデモをBASFのミタッシュが見とどけた

ですが上記は比較的単純な構成のものが生成物であり、最終物が医薬品や精密合成品の分野では今なおバッチ合成が主流であることは否めません。上記の理由に加えて鍋があればカレーもシチューも豚汁も作れるように、いろんな反応に適用できるし、掃除がしやすいし、とりあえず混ぜときゃ収率はともかくだいたい大量に合成できることが大きなメリットであることは言うまでもないでしょう。

バッチからフロー、さらにマイクロへ

しかし、精密合成・反応制御と言いながらいつまでも鍋で煮てていいのか、ってことで2002年あたりからフロー合成の機運はこんな感じで高まっています↓。今回取り上げるのはそのうち「マイクロリアクター」をツールとして用いるものです。

FC_02
特にマイクロリアクターの論文数伸びがすごい こちらから引用

・・・言葉で書いててもアレなので、ざっくり下記のようなものを載せてみます。

FC_07

こういう小型のものから・・・

FC_06

こういう大型の多連化したものまである(上の写真が流路、下のが組上げたもの)
実際にこれらの装置を利用して合成される市販薬品類がそこそこある模様
いずれもこちらの資料より引用

欧州ではこうしたマイクロフロー合成装置の開発が盛んなようで、グラーツ工科大学、アイデンホーベン大学などで化学企業と組んでの研究が盛んに行われているとのこと。日本でも市販品としてYMC社、中村超硬社、テクニスコ社等が販売しています。

で、こうした反応器や手法の何がうれしいのか。色々な資料に様々に記述されていますが、たとえばオランダ最大の化学会社、DSM(元オランダ石炭公社)が提唱する「フロー合成」のメリットは、下記4点にまとめられています。

苛烈な条件でも安全に反応させられること (Safe use of extreme reaction conditions)
開発期間の短縮 (Reduced development time)
反応制御性の向上 (Improved process control)
製造コストの低減 (Reduced production costs)

さらに「マイクロ」フローリアクターとなると、反応部をより狭い空間に閉じ込めてその制御をより精密に行うことを狙ったものになり、そのような研究論文はこれまでにも多く登場しております。

今後の展開

マイクロフロー合成はそれぞれの個別反応を細かく制御出来ることが持ち味です。こうした個別反応を開発することもそうなのですが、最終的にはこれらの反応器を多数含むリアクターとして、「モジュール化」が進むような気がしています。そうだとすると、反応 ルートマップでマイルストーン的な反応物があって、それに従った反応モジュールが出来、そのモジュールの組み合わせだけで所望の医薬品や精密合成品が出来ていく、という夢のような反応器が出来上がっていくことになりそうなのですが・・・。

FC_10

たとえばこんな感じで複雑な反応も原理的には組上げられる
こちらの論文より引用

ただフロー合成最大の懸念は“詰まり”Constriction/Cloggingと呼ばれる現象で、生成物がキチンと溶媒にとけてくれればいいのですが、例えば下記のように固形物が出てくるようなケースだとこれは難儀です。

FC_05

たとえばこの単純な反応でも反応壁に析出しようもんなら
圧損がガンガン上がり最終的にはドン詰まりになってしまう(リンクこちら

そのほか、ちょっとしたチリでも原料やプロセスに入ったり生成してしまうと詰まって全部止まってしまうわけで。もちろん手前にフィルタかますとかメインポイントでバイパスするとかパラレル化するとかのやり方で色々対応することが出来るでしょうが、管理的にはなかなか難儀な問題となりそうな。ここらへんもどう技術的に目途をつけていくか、非常に興味のあるところであります。素人の思いつきレベルでは、詰まりに対して超音波を定期的に当てるとかどうかな、と思ったりしましたが既にそういう技術あるんですね、はい。実際にChemtrex社などそこらへん解決して大量合成を実証してるようですから、今までできなかった反応等を進められるツールとしての発展は益々進んでいくことでしょう。

 

参考文献

・”PI Technology Update on Microreactors”  リンクこちら
・”Microreactors in Discovery and Development” リンクこちら
・”Microreactors and Microfluidic Cells in Organic Synthesis” リンクこちら
・”The past, present and potential for microfluidic reactor technology in chemical synthesis” リンクこちら

関連書籍

[amazonjs asin=”4759814175″ locale=”JP” title=”フロー・マイクロ合成: 基礎から実際の合成・製造まで (DOJIN ACADEMIC SERIES)”][amazonjs asin=”4946553320″ locale=”JP” title=”マイクロリアクタ入門”][amazonjs asin=”4781305873″ locale=”JP” title=”マイクロリアクター技術の最前線 (ファインケミカルシリーズ)”]
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 小説『ラブ・ケミストリー』聖地巡礼してきた
  2. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  3. 【10月開催】 【第二期 マツモトファインケミカル技術セミナー開…
  4. 化学者の卵、就職活動に乗りだす
  5. かさ高い非天然α-アミノ酸の新規合成方法の開発とペプチドへの導入…
  6. 第22回次世代を担う有機化学シンポジウム
  7. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に…
  8. タンパク質の定量法―ビューレット法 Protein Quanti…

注目情報

ピックアップ記事

  1. 谷口 透 Tohru Taniguchi
  2. 有機トリフルオロボレート塩 Organotrifluoroborate Salt
  3. 比色法の化学(後編)
  4. とにかく見やすい!論文チェックアプリの新定番『Researcher』
  5. 二フッ化酸素 (oxygen difluoride)
  6. オーラノフィン (auranofin)
  7. 2007年度ノーベル化学賞を予想!(4)
  8. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  9. ユーコミン酸 (eucomic acid)
  10. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカルボニル化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP