[スポンサーリンク]

スポットライトリサーチ

層状複水酸化物のナノ粒子化と触媒応用

[スポンサーリンク]

第46回のスポットライトリサーチは、森本 剛司さんにお願いしました。森本さんは大阪府立大学ナノテク基盤材料研究グループ(高橋研究室)・修士課程に在籍して研究に取り組み、学位を取得。現在は化学メーカーに就職されています。

その取り組みは「触媒活性を有するナノ粒子懸濁液」の形で結実し、プレスリリースおよび論文として先日公開されています。

“Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry”
Tokudome, Y.; Morimoto, T.; Tarutani, N.; Vaz, P. D.; Nunes, C. D.; Prevot, V.; Stenning, G. B. G.; Takahashi, M. ACS Nano, 2016, 10 , 5550. DOI: 10.1021/acsnano.6b02110

研究を指揮された徳留 靖明 准教授は、森本さんをこう評しておられます。研究室で学べることは知識や技術だけではありません。社会性や粘り強さなども重要なものです。企業に就職され、どんな仕事に携わるにしても、その経験は脈脈と生きていくことになるでしょう。

森本君は、明るくて人当たりも良く、朝早く研究室に来て部屋の換気をしてくれる人気者でした。研究については、上手くいかない時も一生懸命に取り組み、厳しい指摘をされた際にも「全く折れない心」を彼は持っていました。本研究遂行の過程で、森本君はポルトガルに1か月余り研究留学をしました。後日その研究所を私が訪れたところ、ラボメンバー以外からも「彼はどうなった? 元気なのか?」と何度も聞かれ、彼の高い社交性と留学先での「存在感」の大きさに驚かされました。サイエンティストとしての能力のみならず、人とのコミュニケーション能力に長けた森本君が、就職先の化学メーカーでも活躍することを期待しています。

それではいつもどおり、森本さんから現場のお話を伺ってみました。ご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

私たちが研究している層状複水酸化物(LDH)は生体親和性・触媒特性・イオン交換性・物質吸着性などの優れた機能性を示す環境材料です。LDHは、古くから研究されている材料ですが、マイクロメートルサイズの大きな結晶の凝集体になりやすく、ナノLDH粒子の合成は困難でした。機能性材料の応用に向けて、LDHのナノ粒子化は重要な課題でした。

本研究では、結晶成長と凝集をpH変化と微粒子の表面修飾で制御し、ナノLDH粒子を安定・高濃度に含む水性懸濁液を得ることに成功しました(図1)。得られたナノ結晶はNi(II)とAl(III)を含むLDHであり、10 nm以下に鋭いサイズ分布を持ちます(図2)。さらに、得られた粒子は「ナノ触媒」として作用することを明らかにしました。均一触媒のように反応成分と混和し、不均一触媒のように簡単に反応系から分離できることがわかりました。

図1 ナノLDH粒子の透明な懸濁液と微粒子の電子顕微鏡(SEM)写真

図1 ナノLDH粒子の透明な懸濁液と微粒子の電子顕微鏡(SEM)写真

図2 動的光散乱(DLS)法により測定したLDHナノ粒子水性懸濁液の粒度分布。単分散結晶粒子が形成しており凝集体はみられない。

図2 動的光散乱(DLS)法により測定したLDHナノ粒子水性懸濁液の粒度分布。単分散結晶粒子が形成しており凝集体はみられない。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

「ナノ結晶合成における難問」に挑戦したことです。微細ナノ結晶の溶液合成には、一般的に高過飽和度な環境下における核生成が必要で、高濃度の原料成分溶液を用いて反応をおこなうことが求められます。しかし、このような条件では粒子が凝集・ゲル化しやすく、分散ナノ粒子懸濁液を得るのは不可能でした。そこで、結晶性ゲル形成メカニズムを様々な手法を用いて検証し、凝集・ゲル化の原因を突き止めました。結果、独自の手法を用いて作製した高濃度ナノ結晶性LDHゲル体に対してpH刺激を与えることで、ゲルが自発的に解こうしLDHナノ結晶を安定・高濃度に含む水性懸濁液を得ることに成功しました。これまで相容れないと思われてきた「高濃度の条件下で分散したナノ粒子を得る」ことを成し遂げたことがとても印象に残っています。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

当初、私たちの研究室では異なるメカニズムに基づいてLDHゲルの形成をおこなっていました。しかし、このメカニズムに基づいて何度実験を繰り返しても求める実験結果を得ることができませんでした。そんな時に、自分なりに工夫した組成系でこれまで見たことのないゲルの解こう挙動を確認しました。そこから、1年をかけて十分な証拠を揃え、この現象のメカニズムを解明し、ナノLDH粒子合成の糸口を得ることが出来ました。何度失敗しても決してあきらめない馬力と些細なことを見逃さない観察力で研究の最大の難関を乗り越えました。しっかりとしたデータを地道に積み重ね、定説にこだわらず多面的にものごと考えることの大切さを学びました。この経験は、大学研究室生活の中で身に着けた大きな財産です。

 

Q4. 将来は化学とどう関わっていきたいですか?

今後は、化学的な技術を用いて人々に役立つものを生み出していきたいです。

研究室では、かなり基礎的な研究に関わってきました。基礎研究の重要性も理解しているのですが、私はもっと世界中の人に影響を与えることをやりたいと思い、化学メーカへの就職を決めました。研究で培った考え方は将来仕事を進めていく上で非常に役にたつと思います。

化学の力で世界をより豊かにすることが将来の目標です。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私の中で研究は趣味でした。研究室のメンバーからも、一番楽しそうに実験をやっているとよく言われていました。ただ、研究成果が順調だったということはありませんでした。実際、成果が出たのは同期の中で一番最後でした。周りがどんどん成果を出す中で、自分の研究が進んでいないことに、いつも悔しさと焦りを感じていました。しかし、つらい中でも毎日何かを発見できることがとても楽しく、実験がいやだと思うことはなかったと思います。

「研究を楽しむ」これが研究者に最も必要なことではないでしょうか。

関連リンク

研究者の略歴

sr_T_Morimoto_1森本 剛司 (もりもと つよし)

所属:

大阪府立大学院工学研究科物質化学専攻ナノテク基盤材料研究グループ(高橋研究室)修士課程修了

研究テーマ:

層状複水酸化物ナノ粒子合成法の開拓と触媒活性評価

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 原子のシート間にはたらく相互作用の観測に成功
  2. 2022 CAS Future Leaders プログラム参加者…
  3. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の…
  4. メチレン架橋[6]シクロパラフェニレン
  5. TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成
  6. SFTSのはなし ~マダニとその最新情報 後編~
  7. 単一分子の電界発光の機構を解明
  8. 治療応用を目指した生体適合型金属触媒:② 細胞外基質・金属錯体を…

注目情報

ピックアップ記事

  1. 「石油化学」の新ネーミング募集!
  2. 福山還元反応 Fukuyama Reduction
  3. なんだこの黒さは!光触媒効率改善に向け「進撃のチタン」
  4. 癸巳の年、世紀の大発見
  5. 3Dプリンタとシェールガスとポリ乳酸と
  6. 分子間および分子内ラジカル反応を活用したタキソールの全合成
  7. 超原子価ヨウ素を触媒としたジフルオロ化反応
  8. 図に最適なフォントは何か?
  9. アメリカの研究室はこう違う!研究室内の役割分担と運営の仕組み
  10. サリドマイド、がん治療薬に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー