[スポンサーリンク]

化学者のつぶやき

穴の空いた液体

[スポンサーリンク]

 

ゼオライト(沸石)や金属有機構造体(MOF: Metal organic frameworks)などに代表される多孔性材料は、その広大な表面積を利用した、ガス貯蔵や触媒、分子ふるいなどへの応用が世界中で研究されています。

多孔性材料は空孔を維持するのに十分な強度をもつために室温で固体であるため、現在のフロー・プロセスを基本とする工場規模での実用化が進んでいません。この問題を解決し得る、多孔性を有し、かつ、流動性のある材料として「多孔性液体」が考え出されました[1]。多孔性液体とは、その内部に空孔をもつため少ないエネルギーで物質の吸着・脱着ができ、さらに、ポンプと配管で輸送可能な流動性を併せもつような材料です(図 1)。多孔性液体は、省エネルギー化を目指した化学工場への応用や全く新しい形式の溶媒としての機能が期待できます。

2016-05-01_21-39-17

図1 多孔性液体のコンセプト

 

多孔性液体の合成戦略

連続した構造体で空孔を維持する場合は、どうしても構造が頑強になってしまい、流動性をもたせにくくなります。

一方、液体は必然的に流動してあらゆる隙間を埋めてしまうため、流動性の高い柔軟な構造では空孔を維持するのは困難です。つまり、多孔性と流動性を併せもつ多孔性液体は本質的にジレンマを抱えている。

そこで近年、英国クイーンズ大学のJames教授らは、連続した構造体の最小単位で空孔を維持できる有機分子ケージに注目しました。彼らはまず、リバプール大学のCooper教授らによって合成された、固体状態で多孔性を示すかご状イミン[2]に様々な種類のアルキル鎖を導入し、ケージ間の相互作用を減らすことで融点を下げ、室温で液状の多孔性材料の開発を行いました[3]。合成されたアルキル置換かご状イミンは50 °Cで融解するものの、アルキル鎖がケージの内部に入り込み空孔を埋まってしまうために、多孔性液体の開発には至りませんでした。

そこで最近彼らは、ループ状に閉じたクラウンエーテルを置換基に用いることで、ケージ内部への侵入を防ぎ、かつ、流動性を確保することができるのではないかと考えました[4]

2016-05-01_21-43-08

図2 多孔性液体の合成戦略

 

多孔性液体の合成と評価

先の合成戦略に基づき合成されたクラウンエーテル・ケージは、それ自身では室温で固体であり、昇温してもクラウンエーテル部分が壊れてしまい、液化させることはできませんでした。しかし、クラウンエーテル・ケージは15-クラウン-5に高濃度で溶解させることができました。クラウンエーテル・ケージのクラウンエーテル溶液は、分子動力学による計算と陽電子消滅法(補足)による測定実験の両方から空孔の存在が支持されました。メタンガスの吸着量は、純粋な15-クラウン-5の8倍であり、温度を上げても吸着量の劇的な低下は見られませんでした。

しかし、クラウンエーテル・ケージは大量合成に向かず、また粘度も高いなど、問題点がありました。そこで彼らは、クラウンエーテル・ケージの改良版としてのスクランブル・ケージを開発しました。

2016-05-01_21-48-19

図3 二つの多孔性液体

スクランブル・ケージは市販されている試薬からたったの一段階で合成可能です。また、二種類のジアミンを用いることで、構造の多様性を増やし、溶解性の向上に成功しています。スクランブル・ケージのヘキサクロロプロペン溶液において、メタンガスの1H NMR実験から空孔内部にメタンが吸着していることが確かめられられています。また、キセノンを溶かし込んだ多孔性液体にケージに入り込める大きさであるクロロホルムを添加した場合、キセノンの大幅な脱離が観測されました。一方、ケージに入り込めない大きさの1-t-ブチル-3,5-ジメチルベンゼンを添加した場合にはキセノンの脱離は観測されないなど、サイズ選択性が高いことが示されました。

 

まとめ

今回、James教授らは適切なケージ置換基のデザインと適切な溶媒の選択により、多孔性と流動性をもつ多孔性液体を開発しまいsた。固体の多孔性材料と比較すると着脱能に改善の必要はあるものの、今後のさらなる研究によって、触媒反応、抽出、気体の貯蔵や分離などへの応用が期待されます。

 

参考文献

  1. O’Reilly, N., Giri, N., James, S. L. Chem. Eur. J. 2007, 13, 3020. DOI: 10.1002/chem.200700090
  2. Cooper, A. I. and coworker, Nature Mater. 2009, 8, 973. DOI:10.1038/nmat2545
  3. James, S. L. and coworker, Chem. Sci. 2012, 3, 2153. DOI: 10.1039/C2SC01007K
  4. Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Rätzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L.;Nature 2015, 527, 216. DOI: 10.1038/nature16072

 

関連リンク

  1. Mastalerz, M “Materials chemistry: Liquefied molecular holes” Nat., 2015, 527, 174. (Nature, News & Views )
  2. 2. Cooper Group, News, “Scientists invent world’s first ‘porous liquid

 

補足

陽電子消滅法

陽電子消滅寿命測定法は、陽電子をプローブとすることで非破壊・非接触で自由体積空孔のサイズ・分布を測定することができる測定法。原理は、放射生同位体である22Naがβ崩壊するときに得られる陽電子(電子の反物質で電子と同じ質量をもつが、電荷は正である)を物質中に入射すると、電子と衝突して対消滅する。この時、消滅した質量がエネルギー(光子)として放出される。

空孔が多い物質ほど、陽子が対消滅する確率が小さいので陽電子寿命が長くなる。そのため、陽電子寿命を測定することで資料の空孔のサイズがわかる。

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  2. 自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を…
  3. 「糖化学ノックイン」の世界をマンガ化して頂きました!
  4. 研究室の安全性は生産性と相反しない
  5. 有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒…
  6. ワンチップ顕微鏡AminoMEを買ってみました
  7. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポ…
  8. ケムステが文部科学大臣表彰 科学技術賞を受賞しました

注目情報

ピックアップ記事

  1. 異分野交流のすゝめ
  2. 最強の文献管理ソフトはこれだ!
  3. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  4. 天然物の構造改訂:30年間信じられていた立体配置が逆だった
  5. 研究者としてうまくやっていくには ー組織の力を研究に活かすー
  6. 創薬・医療分野セミナー受講者募集(Blockbuster TOKYO研修プログラム第2回)
  7. 【本日14時締切】マテリアルズ・インフォマティクスで活用される計算化学-その手法と概要について広く解説-
  8. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動化ライブラリ「RadonPy」の概要と使い方
  9. 過酸がC–H結合を切ってメチル基を提供する
  10. 第7回HOPEミーティング 参加者募集!!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年5月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー