[スポンサーリンク]

化学者のつぶやき

反応の選択性を制御する新手法

[スポンサーリンク]

 ベンジル基をもつ4級アンモニウム1を強塩基で処理すると、アンモニウムイリド2を経由して[1,2]-シグマトロピー転位(Stevens転位)と [2,3]-シグマトロピー転位(Sommelet–Hauser転位)が競合して起こることが知られています(図 1)。

図1. アンモニウムイリドの2種類の転位反応

図1. アンモニウムイリドの2種類の転位反応

 

速度論支配の反応では、一般に活性化エネルギーがより小さい遷移状態(TS B)を経て反応が進行します(図 2a)。反応の選択性を制御するには、一方の生成物に対応した遷移状態のみを安定化または不安定化させればよい。しかし、上記2つの転位反応は共通の遷移状態3を経由して進行するため、選択性を制御することができませんでした(図 2b)[1]。最近、テキサスA&M大学のSingletonらはdynamic matchingという概念を用いてこれらの転位反応の選択性の制御に成功しました。

“Controlling Selectivity by Controlling the Path of Trajectories”

Bissau, B.;  Singleton, D. A. J. Am. Chem. Soc. 2015, 137, 14244. DOI: 10.1021/jacs.5b08635

 

2016-01-30_16-52-34

図2

dynamic matchingとは

 dynamic matchingとは、反応の遷移状態における原子の運動の方向(transition vector)が後に起こる反応経路に影響するという考え方です[2]。この考えに従うと図3aのように、単一の遷移状態から異なる2つの生成物が得られる場合、原子の運動方向にそった反応が優先して進行します。

アンモニウムイリドの[2,3]-転位反応はC3−C2結合の形成とC1–N結合の開裂が協奏的に進行します。一方、[1,2]-転位反応では協奏的なシグマトロピー転位反応は軌道の対象性から禁制となるため進行しない(Woodward–Hoffmann則)。実際の[1,2]-転位ではC1–N結合が開裂した後C1–C2結合の形成が起こります(図 3b)。

 

図3. (a)Dynamic matchingの概念図 (b)実際の反応

図3. (a)Dynamic matchingの概念図 (b)実際の反応

 

著者らはこれに注目し、遷移状態において原子団が離れる方向に動いている場合(図3b,TS1)、協奏的な[2,3]-転位反応よりも、C1–N結合開裂が優先しておこり、その後のC1–C2結合形成によって [1,2]-転位生成物が得られると考えました。逆に、遷移状態において原子がC3−C2結合を形成するような方向に動いていた場合(図3b,TS2)、協奏的な[2,3]-転位反応が起こり [2,3]-転位生成物が優先して得られます。著者らは、Hammond仮説(付録参照)に基づき、始原系を相対的に安定化させることによって遷移状態の構造を [2,3]-転位生成物に近づけました。この遷移状態では原子がC3−C2結合を形成する向きに動いており、[2,3]-転位が優先しておこります(図 4)。

図4. 遷移状態の移動によるTransition vectorの変化

図4. 遷移状態の移動によるTransition vectorの変化

 

著者らはモデル基質として4級アンモニウム塩8を用いました(図5)。8は塩基によって脱プロトン化され、エノラート型のイリド9を形成します。9を安定化する溶媒や塩基の検討をした結果、メタノール溶媒中で、ナトリウムメトキシドを塩基として用いて反応を行うと[2,3]-転位生成物が優先して得られました。著者はエノラートの酸素原子とメタノールによる水素結合によってイリド9が安定化され、遷移状態が生成系に近くなったためであると述べています。また、非プロトン性溶媒中でジアザビシクロウンデセン(DBU)を塩基として反応を行った場合、[2,3]-転位生成物が選択的に得られた。このことについて著者はDBUの共役酸はメタノールよりもプロトンの供与性が高く、イリド9をより安定化したためであると述べています。

図5. 始原系の安定化による選択性の向上

図5. 始原系の安定化による選択性の向上

まとめ

今回著者らは、遷移状態の早遅を変えることでアンモニウムイリドの転位反応の選択性を制御することに成功しました。この報告は、単に一例の転位反応の選択性を制御するだけでなく、一般的な選択性の制御とは異なる、dynamic matchingを用いた新たなアプローチを提言した面白い論文でした。

 

参考文献

  1. Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc. 2014, 136, 3740. DOI: 10.1021/ja4128289
  2. Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336. DOI: 10.1021/ja00128a024

 

Hammond仮説

ある素反応において始原系が遷移状態を経て生成系へと変化していく際にとりうる各状態で、自由エネルギー的に近い状態は構造的にも類似しているという仮説。Hammond仮説よると発熱反応において、遷移状態のエネルギーは生成系よりも始原系に近いので、遷移状態の構造も始原系に近い。逆に、吸熱反応においては、遷移状態のエネルギーは始原系よりも生成系に近いので、遷移状態の構造も原型に近い。

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域で…
  2. アンモニアの安全性あれこれ
  3. 工程フローからみた「どんな会社が?」~タイヤ編 その2
  4. 危険ドラッグ:創薬化学の視点から
  5. Q&A型ウェビナー カーボンニュートラル実現のためのマ…
  6. 続・企業の研究を通して感じたこと
  7. 植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見
  8. 研究者のためのマテリアルズインフォティクス入門コンテンツ3選【無…

注目情報

ピックアップ記事

  1. アメリカで Ph.D. を取る –結果発表ーッの巻–
  2. 長期海外出張のお役立ちアイテム
  3. カラス不審死シアノホス検出:鳥インフルではなし
  4. 『分子標的』に期待
  5. 芳香族ニトロ化合物のクロスカップリング反応
  6. 湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜
  7. 化学探偵Mr.キュリー7
  8. 大麻複合物が乳がんの転移抑止効果―米医療チームが発見
  9. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授
  10. <アスクル>無許可で危険物保管 消防法で義務づけ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー