[スポンサーリンク]

スポットライトリサーチ

鉄系超伝導体の臨界温度が4倍に上昇

[スポンサーリンク]

第31回のスポットライトリサーチは、東京工業大学 物質理工学院(細野・神谷・平松研究室)博士課程1年の半沢幸太 さんにお願いしました。

半沢さんの所属される細野研究室は、無機材料化学分野で画期的成果を上げ続ける世界トップラボの一つです(こちらのケムステ過去記事もご覧ください)。今回のトピックでもある「鉄系超伝導体」もその一つ。2008年に発表された論文Science誌の「ブレークスルー・オブ・ザ・イヤー」を飾るなど、世界的に極めて高く評価されています。その後も継続的に研究は続けられ、半沢さんを筆頭著者とする論文が、先日プレスリリースとともに公表されました。

”Electric field-induced superconducting transition of insulating FeSe thin film at 35 K”
Hanzawa, K.; Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H.
Proc. Natl. Acad. Sci. USA 2016, 113, 3986. DOI: 10.1073/pnas.1520810113

 

現場で直接指導されている平松秀典 准教授は、半沢さんをこう評しておられます。

半沢君は、卓越したプロセス技術と研究に対する真摯な姿勢を併せ持つ気鋭の若手です。今回PNASに掲載された成果も、彼が中心となって、寝食を忘れるほどこの研究テーマに打ち込んだから得られたものです。今後も一層の飛躍が期待できると確信しております。

実用化に向けて着々と歩みを続ける分野ですが、いつものように現場のリアリティをご堪能いただければと思います。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

2008年に当研究グループが発見した鉄系超伝導体(2008年JACS [1])をはじめとする高温超伝導体は、超伝導体となる前の母相に価数の異なる元素を置換し、伝導キャリアを添加すると超伝導相へ転移します。本研究では、母相として絶縁性FeSe薄膜を選択しました(FeSeは塊のバルクでは超伝導臨界温度(Tc)が8 Kの超伝導体ですが、ナノメートルオーダーの非常に薄い薄膜では絶縁体的特性を示します)。その理由は、鉄系超伝導体よりも高いTcを示す銅酸化物高温超伝導体の母相と特徴が類似しているからです。そして、キャリア添加手法としては、高濃度キャリア添加が元素置換せずに実現可能な電気二重層トランジスタ構造(図1左)を用いました。その結果、正のゲート電圧を印加することで最大35 Kの高Tc 超伝導転移(バルクの8 Kの約4倍)の観察に成功しました(図1右)。

sr_K_Hanzawa_1

図1: 本研究で作製した電気二重層トランジスタの概略図(左)と電気二重層トランジスタ構造を使って、ゲート電圧を印加したときのFeSe薄膜チャネルの電気抵抗の温度依存性(右)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

研究を始めた当初は、高品質FeSe薄膜の作製に苦労しましたが、最も工夫したところは電気二重層トランジスタを作製するプロセスです。先輩の片瀬さん(2014年PNASの筆頭著者で、現 北大電子研 助教)や、本論文の共著者でもある佐藤さん(2016年3月博士課程修了, 現ゼネラル・エレクトリック)に習い、初めは大気中でデバイスを作製していました。しかし、ゲート電圧を印加しても電気抵抗の変調が全く観測されませんでした。そこですぐに諦めず、薄膜表面の状態が悪いのでないかと考えて、デバイス作製プロセスを全てArもしくは真空雰囲気で、試料を大気暴露することなく行ってみました(図2)。普段から薄膜表面を原子間力顕微鏡で観察していて、表面が大気暴露に弱いことに気づいており、もしかしたらそれが原因でデバイスが動作しないのでは?と考えたからです。この独自のプロセス開発がキーとなって、高いTcの超伝導転移を観測できました。

sr_K_Hanzawa_2

図2: 電気二重層トランジスタ作製プロセスの概要。図中の用語:MBE(分子線エピタキシー)、PLD(パルスレーザー堆積法)、GB(グローブボックス, 酸素濃度=1ppm以下、露点=約マイナス100°C)、L.L.(準備室)。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

薄膜表面やゲート絶縁体として用いているイオン液体は周りの環境による変化や経時変化が激しく、実験バッチごとに同じ状態を実現することが困難でした。 そこで、先輩の佐藤さんや先生方と議論を重ね、こういった問題を薄膜表面に関しては図2のプロセスを開発することによって、イオン液体に関しては保管方法からデバイスに滴下するプロセスまで全てを常に同じ状態・動作で行えるよう徹底した管理を行うことで解決しました。

 

Q4. 将来は化学とどう関わっていきたいですか?

実際の研究は頭の中や机の上だけで出来るものではなく、手を動かす泥臭い仕事も重要だと思っています。私はこれまで農工大工学部時代の恩師である内藤方夫先生、東工大に進学してからは主に平松先生に徹底的に真空機器に関する知識を叩き込まれました。今ではそれが私の一番の武器になっています。そして、そういう専門知識を武器として、必死でとった実験データをどう解釈するか、どう次につなげていくのか、というのは研究者の知識、経験、好みに依存していると考えています。今回は、超伝導のみを考えていましたが、もっと知識があって、違う観点から見たら面白いことが内在しているかも知れないとも思っています。従って、現在指導して頂いている細野先生、神谷先生や平松先生のように化学・物理といった分野の垣根に縛られることなく、幅広い分野の知識と視野を持って、様々な分野の研究に関わっていきたいと思っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の成果は御指導頂いた細野先生、神谷先生、平松先生と研究室の方々の御助力のおかげです。深く感謝いたします。

この研究の成果が出始めた頃は、実はあまり大した結果ではないと自分では勝手に思っていました。しかし、いろいろな人と議論したり、文献を調べたりしているうちに、けっこういいのでは?と思い直すようになりました。言いたいことは、普段から自分の研究テーマについて、もっといろいろな視点から考えておくことがとても大事だと実感したということです。

最後に、新年度が始まり研究室に新入生が来る頃だと思います。皆さんは研究をしに大学に来ているので仲良くする必要はないと思いますが、喧嘩はしないようにしましょう。

 

関連リンク

研究者の略歴

sr_K_Hanzawa_3半沢 幸太(はんざわ こうた)

2014年3月 東京農工大学 工学部 卒業

2016年3月 東京工業大学 材料物理科学専攻 修士課程修了

2016年4月 東京工業大学 物質理工学院 材料系 博士課程(現在に至る)

研究テーマ:薄膜化を駆使した新機能性材料の探索

 

 

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 僕がケムステスタッフになった三つの理由
  2. 電子雲三次元ガラス彫刻NEBULAが凄い!
  3. 学術変革領域(B)「糖化学ノックイン」発足!
  4. 初めてTOEICを受験してみた~学部生の挑戦記録~
  5. 光分解性シアニン色素をADCのリンカーに組み込む
  6. Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編…
  7. 2018年 (第34回)日本国際賞 受賞記念講演会のお知らせ
  8. Lindau Nobel Laureate Meeting 動画…

注目情報

ピックアップ記事

  1. 金属内包フラーレンを使った分子レーダーの創製
  2. シュワルツ試薬 Schwartz’s Reagent
  3. 藤沢の野鳥変死、胃から農薬成分検出
  4. 試験管内選択法(SELEX法) / Systematic Evolution of Ligands by Exponential Enrichment
  5. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  6. アクリルアミド /acrylamide
  7. 創薬化学―有機合成からのアプローチ
  8. ライトケミカル工業2025卒採用情報
  9. π-アリルイリジウムに新たな光を
  10. 有機色素の自己集合を利用したナノ粒子の配列

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー