[スポンサーリンク]

一般的な話題

トイレから学ぶ超撥水と超親水

[スポンサーリンク]

「水と油の関係」といえば、慣用句として通じるくらい一般的な現象ですね。両者は相容れない性質の違いによって、互いに混ざり合おうとはしません。この現象を利用して様々なことができるようになり、例えば水、もしくは油のどちらに混ざりやすいかを利用して混合物から物質を抽出したりできます。今、あなたが飲んでいるコーヒーやお茶もこの現象を利用したものですね。

では、混ざり合わない水と油のその境界は一体どうなっているのでしょうか?

今回のポストでは子供心にも不思議な、この境目に関しての話題と面白動画をお届けしたいと思います。

特に不快な表現はしておりませんがトイレの話題も入っておりますので、お食事中の方は、閲覧をご遠慮下さいね。

 

よく色々な商品に、ホニャララコーティングで汚れが付きにくいとかありますよね。代表的なのはフライパンによくあるテフロンコーティングでしょうか。これは水も油も両方「弾く」ことによるものですが、物質単体が持っている性質というよりも、表面の凹凸加工にも秘密があります。ハスの葉っぱの表面などはその表面形状によって水を弾いています。

superhydro_1

青い弧が液体

物質が液体を弾くというのは科学的に表現できます。固体が液体と気体に接触している際に形成される3相の境界線において、液体の面と固体の面が成す角度を接触角と呼びますが、この接触角θcの角度が大きいと、その固体は液体を弾いているということになります(上図左)。特に水との接触角が150°を超える場合は超撥水(Superhydrophobic)と表現し、こちらで紹介したマシュマロゲルなどがこの性質を示します。この超撥水を利用することで面白映像が撮れちゃいます。

超撥水な動画たち

この超撥水を利用することで面白映像が撮れちゃいます。

 

 

50秒くらいからが本題ですが、フェムト秒レーザーを利用して表面を加工し、もの凄い撥水加工した材料に水滴をたらしていますが、水滴は見事に弾き飛んでいます。ロチェスター大学のChunlei Guo教授のご提供です[1]。

 

 

こちらは超撥水表面に置いた水を超撥水のナイフで切るというものです。水が二つにポニョンと分かれるシーンがプリティーですね。アリゾナ州立大学のAntonio A. Garcia教授のご提供動画です[2]。

 

先日以下のようなニュースを目にしました(このニュースにインスパイアされて本記事を執筆しています)。

 LIXILは2月23日、汚物や水垢の付着を防ぐトイレ用の陶器「アクアセラミック」を開発したと発表した。「新品状態の輝きが100年続く」をうたう。

「傷汚れ」「細菌汚れ」を防ぐ従来の性能に加え、「汚物」「水垢」にも対応し、トイレの4つの汚れを防ぐ新素材。1997年から開発研究を続けてきたという。

少量の洗浄水で汚物をきれいに流せるよう、陶器の表面に水になじみやすい「超親水性」加工を施す。汚れの下に洗浄水が入り込み、浮かび上がる仕組みだ。表面に書いた油性インクの汚れも水滴を垂らすだけで洗浄できるという。

黒ずみやピンクカビの原因になる水垢への対応として、陶器の表面に、水酸基(OH-)が露出しない構造を採用。洗浄水に含まれるシリカ(SiO2)と水酸基の結合を防ぐことで、水垢の発生を抑える。

汚れを防ぐ特殊な物質を釉薬(ゆうやく)に一体化させる技術も開発した。別素材でのコーティングと異なり、陶器自体の強度を高める。同社の強度実験によると、100年以上摩耗しないことが確認できたという。

ITmediaニュースより

太字は筆者による改編

撥水させることで汚れを防いだりするのはよくありますが、逆に製品の表面を親水性にしてしまおうというのはあまり聞き慣れないかもしれません。しかし実際は色々なところで実用化されてきております。筆者の車も親水性のコーティングを施してあり、これが凄くよくて洗車が捗ります。

superhydro_3

画像はLIXILのHPより

さて、このLIXILの製品ですが特設ページまで設ける力の入れようで、解説まで載っております。100年クリーンをうたっており、相当な自信がうかがえます。その一端を覗いてみましょう。

superhydro_2

画像はLIXILのHPより 汚物は消d水で引きはがす

撥水する製品では、水、汚れを表面に寄せ付けないようにしようというコンセプトなのに対し、親水性の表面にすることで、陶器と付着した汚れの間に水を入り込ませてしまおうという考え方なようです。この製品の場合は陶器、すなわちセラミックの表面にあるケイ酸由来のヒドロキシ基が露出しないように特殊な物質(企業秘密?)を釉薬に加えているところがポイントとなっています。汚れだけでなく、雑菌や、水垢の原因となるシリカの付着も防ぐことができるそうです。この効果が本当に100年とは言わないまでも20年くらい保つならば、世のご家庭でお掃除を担当される方にとっては朗報となることでしょう。

superhydro_4

画像はLIXILのHPより

ではこの親水性が高い物質とはどんなものでしょうか?それはもうお気づきの通りで、接触角が小さいものになります。接触角が0°に近いものは超親水性(Superhydrophilic)と表現します。

この超親水性については1995年に東陶機器(当時)の研究所において、ガラス表面に酸化チタン(TiO2)のコーティングをした後、紫外線を照射した際に発見されました。酸化チタンといえば光触媒としての利用が期待されていますが、この超親水現象は紫外線照射によって部分的に酸化チタンの酸素が欠落し、その部分が親水性を、その他の部分は疎水性を示すことで、30-50 nmの大きさで交互に親水—疎水を繰り返すため水が丸い水滴にならないことが明らかとなっています。この技術は建物の外壁や車のミラー、そしてTOTOはハイドロテクトと称して便器などにも利用されています。もしかしてLIXILのアクアセラミックもこういった技術なのかもしれませんね。普段あまり気にしませんでしたが、トイレにも化学があるんですねえ。

 

超親水な動画たち

超親水の映像としては、カールスルーエ工科大学のPavel Levkin教授のグループがいくつか紹介してくれています。

 

 

こちらは短いですが、超親水性の素材に水を落とすとどうなるかがわかりやすいです。
 

 

こちらは超撥水と超親水を組み合わせて凄く小さな水滴を表面に並べています。上から下に水滴を誘導すると表面にボツボツが!

 

さて、一番身近な化学物質である水ですが、便利でもあり、厄介でもあり、その用途はまだまだ隠されているものがありそうですね。表面や界面がどうなってんのかというのは凄く分かりやい疑問ですが、その理論は意外と知られていないのかもしれません(この業界の方には当たり前のことでしょう)。ということで、最後にMITのBioInstrumentation Labが提供している超撥水、超親水の非常にわかりやすい解説動画をご紹介しておきます(英語です)。

 

参考文献

 

  1. Vorobyev, A. Y.; Guo, C. J. Appl. Phys. 117, 033103 (2015). DOI: 10.1063/1.4905616
  2. Yanashima, R; García, A. A.; Aldridge, J.; Weiss, N.; Hayes, M. A.; Andrews, J. H.; PLoS ONE 7, e45893 (2012). DOI: 10.1371/journal.pone.0045893
  3. Ueda, E.; Levkin, P. A. Adv. Healthc. Mater. 2, 1425 (2013). DOI: 10.1002/adhm.201300073

 

 

関連書籍

[amazonjs asin=”B000WAMI76″ locale=”JP” title=”SOFT99 ( ソフト99 ) ウィンドウケア 超ガラコ 70ml 04146″] [amazonjs asin=”4320044177″ locale=”JP” title=”固体表面の濡れ性 (化学の要点シリーズ 12)”] [amazonjs asin=”4274212459″ locale=”JP” title=”図解 光触媒のすべて”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 水素化反応を効率化する物質を自動化フロー反応装置で一気に探索
  2. 配位子で保護された金クラスターの結合階層性の解明
  3. アルキンから環状ポリマーをつくる
  4. 「人工知能時代」と人間の仕事
  5. あなたの天秤、正確ですか?
  6. 元素手帳2022
  7. ポンコツ博士の海外奮闘録② 〜博士,鉄パイプを切断す〜
  8. 文献検索サイトをもっと便利に:X-MOLをレビュー

注目情報

ピックアップ記事

  1. 第89回―「タンパク質間相互作用阻害や自己集積を生み出す低分子」Andrew Wilson教授
  2. 【Spiber】タンパク質 素材化への挑戦
  3. 「株式会社未来創薬研究所」を設立
  4. 痔の薬のはなし after
  5. 【PR】Chem-Stationで記事を書いてみませんか?【スタッフ募集】
  6. キレトロピー反応 Cheletropic Reaction
  7. 色素・樹脂材料処方設計におけるマテリアルズ・インフォマティクスの活用とは?
  8. CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】
  9. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group
  10. ケムステ主催バーチャルシンポジウム「最先端有機化学」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー