[スポンサーリンク]

スポットライトリサーチ

配位子で保護された金クラスターの結合階層性の解明

[スポンサーリンク]

第25回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻(佃研究室) 助教の山添 誠司先生にお願いしました。

佃研究室では、金属クラスターの精密合成とその触媒応用を目指した機能開拓を主軸テーマとして行っています。とりわけそのサイズ制御が機能に劇的な影響を及ぼすことが理解される背景にあって、チオラートなどの適切な配位子でクラスターを安定化する手法は有望視されています。

山添先生はそのような流れの根底を成す基礎研究に取り組み、先日論文とプレスリリースを公開されました。

“Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates”
Yamazoe, S.; Takano, S.; Kurashige, W.; Yokoyama, T.; Nitta, K,; Negishi, Y.; Tsukuda, T.
Nat. Commun. 20157, 10414. doi:10.1038/ncomms10414

研究室を主宰されている佃達哉 教授からは、今回の成果を受けて以下の様なコメントを頂いています。

山添さんからこのテーマの提案を受けた当初は、正直なところこれほどの情報が得られるとは思っていませんでした。今回の測定と解析は大変骨の折れる作業で、これが好きでたまらないという人でないとできません。山添さんの情熱と実行力のおかげで、私としても愛着のある成果につながったことを喜んでいます。

合成と解析は両輪を成すものですが、どちらも粘り強さと地道な取り組み姿勢が欠かせません。そこから得られてきたのはどのような成果でしょうか、ご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

本研究では、「配位子で保護された金クラスターの結合階層性の解明」を行いました。

チオラート配位子で表面を保護された金クラスターは、100個程度以下の金原子でできた超微粒子(金クラスター)の表面を硫黄(S)を含むチオラート(RS)と呼ばれる配位子が表面を保護している化合物で、例えばAu25(SR)18は正二十面体のAu13コア表面に6つのAu2(SR)3錯体が覆った構造をしています。

これまでに、Au25(SR)18のように金原子とチオラートの数が精密に決まった化合物が沢山合成され、触媒やナノデバイスへの応用が期待されています。今回は、高輝度X線を用いたX線吸収分光法により、チオラート配位子で表面が修飾された金クラスター(Au25(SR)18、Au38(SR)24、Au144(SR)60)の結合の堅さに序列があることを実験的にはじめて明らかにしました。正二十面体構造の金コアが、長さに応じて堅さの異なる2種類の金-金結合で構成されていて、一般的な金-金属結合よりも柔らかく長い金-金結合が主に法線方向に分布しているのに対して、一般的な金-金属結合よりも堅く短い金-金結合が主に動径方向に分布していることがわかりました。さらに、堅い金-金結合と金-チオラート結合を結ぶと、剛直な環状ネットワークが形成されていることがわかりました。チオラート保護金クラスターの高い熱安定性は、このネットワークが骨格構造として働くためだろうと思っています。本研究の成果は、有機配位子で保護された金属クラスターの構造安定性を理解する上で基礎的な知見を与えるものと期待しています。

sr_S_Yamazoe_1

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

一般的にX線吸収分光測定は室温で行います。私も最初は室温で配位子保護金クラスターのX線吸収分光測定を東京理科大学の根岸先生藏重先生と共同で行っていました。しかし、金の集合体であるにもかかわらず、金-金結合はほとんど観測されず、金-チオラート結合のみが際立って観測されました(勿論,構造を正確に解析することもできませんでした)。先行論文でも同じ結果が報告されていたので、配位子保護金クラスターは金-チオラート結合が際立って観測されてしまうものだと思っていました。

ちょうどその頃、X線吸収分光測定を行っていたSPring-8のBL01B1で新しいクライオスタッド(液体ヘリウムを使って試料を低温まで冷やす装置)を開発していました。開発担当の新田さんが、「サンプル冷やせますよ」と言ってくれた時に、「もしかしたら金-金結合の熱振動が大きいから室温では正確に測れなかったのでは」と気づきました。実際に冷やして測定してみると非常に綺麗なX線吸収スペクトルが得られただけでなく、金-金結合に由来するピークが強く観察されました。構造も正確に解析できるようになり、本研究を最後まで遂行することが出来ました。

sr_S_Yamazoe_2

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

低温で測定することで構造を正確に解析できるようになったのですが、その分,多くの構造パラメータを同時に動かす必要が出てきます。何も考えずに解析を行うと間違った答えにたどり着いてしまう可能性があり、解析の妥当性を評価するのに苦労しました。解析に用いる理論式(EXAFSの式)の意味を理解して少しずつパラメータを動かすことで解析を進めるとともに、X線吸収分光法の専門家である横山先生と議論しながら解析を進めることで、この問題点をクリアしました。

Q4. 将来は化学とどう関わっていきたいですか?

これまで幾つか異なる分野で材料開発の研究を行ってきましたが、いずれの分野においてもその根本には“構造”と“機能”がありました。機能を明らかにするためには、原子レベルでの構造解明と機能発現時における構造の動的挙動の解明が必要不可欠であると考えています。現在、大型放射光施設の高輝度X線を用いればピコ秒オーダーの時間分解能で構造を追跡することが可能になってきています。このような最新の測定技術を駆使して構造と機能の関係を化学の視点から明らかにし、新しい機能性材料をデザイン・開発していきたいと思っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

化学の研究は基本的に手を動かさなければ成果はでません。研究をデザインし,実験を考えながら進めることは大切ですが、遊び心をもって研究をして欲しいです。思わぬところから新しい発見や発想がうまれてくることが多いです。 ほんのちょっとしたアイディア実験、無駄かもしれないが面白そうな実験を積極的にやってください。化学を楽しみましょう。

関連リンク

研究者の略歴

sr_S_Yamazoe_3山添 誠司 (やまぞえ せいじ)

所属:東京大学大学院・理学系研究科化学専攻・佃研究室・助教

研究テーマ:金属クラスター・金属酸化物クラスター触媒の開発、放射光を用いた機能性材料の構造解析

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 世界⼀包括的な代謝物測定法の開発に成功〜ワンショットで親⽔性代謝…
  2. エマルジョンラジカル重合によるトポロジカル共重合体の実用的合成
  3. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  4. 「アニオン–π触媒の開発」–ジュネーブ大学・Matile研より
  5. 熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-
  6. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  7. 金属キラル中心をもつ可視光レドックス不斉触媒
  8. 【書籍】合成化学の新潮流を学ぶ:不活性結合・不活性分子の活性化

注目情報

ピックアップ記事

  1. シリコンバレーへようこそ! ~JBCシリコンバレーバイオ合宿~
  2. 高峰譲吉の「アドレナリン」107年目”名誉回復”
  3. 宇宙に輝く「鄒承魯星」、中国の生物化学の先駆者が小惑星の名前に
  4. 島津製作所、純利益325億円 過去最高、4年連続で更新
  5. 「優れた研究テーマ」はどう選ぶべき?
  6. 環サイズを選択できるジアミノ化
  7. 相撲と化学の意外な関係(?)
  8. 【書籍】化学系学生にわかりやすい 平衡論・速度論
  9. メソポーラスシリカ(1)
  10. 化学系企業の採用活動 ~現場の研究員視点で見ると~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー