[スポンサーリンク]

スポットライトリサーチ

ワサビ辛み成分受容体を活性化する新規化合物

[スポンサーリンク]

 

年明けから怒涛のペースで紹介させていただいてすでに第20回目。今回のスポットライトリサーチは、京都大学大学院医学研究科医学専攻 (上杉研究室) 博士後期課程4年の高屋潤一郎さんにお願いしました。これまで紹介してきたうちの数人と同様、先日のPacifichem2015の学生ポスター賞を受賞されており、今回の紹介に至りました。

研究室を主宰される上杉志成教授も、日夜研究に勤しむバイタリティーある大学院生である高屋さんに、今年からの海外留学を経て、さらに大きく成長してくれる期待を寄せているとのことです。

さて今回の研究ですが、ワサビの辛み成分受容体を活性化する小分子化合物を、「反応性化合物ライブラリ」から見つけ出したというものです。いつものように詳しい話を高屋さんに伺いましたので、続きをご覧ください!

Q1. 今回の受賞対象となったのはどんな研究ですか?簡単にご説明ください

ワサビを食べたときに鼻がツーンとする感覚は、大抵の方が経験したことがあるのではないでしょうか。今回受賞対象となった研究は、その感覚を引き起こすワサビ*1のレセプターでもある、TRPA1チャネルを活性化する新しい化合物に関する研究です。この成果は最近、論文としても上梓いたしました。

Takaya, J., Mio, K., Shiraishi, T., Kurokawa, T., Otsuka, S., Mori, Y., Uesugi, M.
”A potent and site-selective agonist of TRPA1.”
J. Am. Chem. Soc. 2015, 137, 15859−15864. DOI: 10.1021/jacs.5b10162
Introduced as the JACS spotlights (DOI: 10.1021/jacs.5b13126)

この新しいTRPA1のアゴニストJT010 (1)は、約1,600個の反応性化合物で構成されたケミカルライブラリーから同定されました。

TRPA1のアゴニストは数多く報告されていますが、この化合物はある特定のシステインへの選択的修飾を介してチャネルを活性化する稀有なアゴニストであることが、ケミカルバイオロジー的手法を用いたメカニズム解析の中で明らかとなりました。本研究により、今まで不明瞭だったTRPA1の活性化が、ただ一つのシステインの修飾によることが示唆されたとともに、今後のチャネル解析に有用な新しい研究ツールを提供できたのではないかと考えております。

sr_J_Takaya_3

*1 正確には、辛み成分のAllyl isothiocyanate

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

もともと分子生物学を専攻していたこともあり、有機合成は上杉研究室に来てから初めて経験しました。そのため、作成した化合物にはすべて思い入れがあります。特に、ヒット化合物がタンパク質のどこに結合しているのかを示すためのツール作ったときは、どの部位に何を生やすかいろいろと悩んだ記憶があります。最終的に、シンプルなビオチン化誘導体JT010-B (2)を作成しましたが、狙い通り、TRPA1チャネルのビオチン化ができることが分かったときは、非常にうれしかったです。

sr_J_Takaya_2

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

TRPA1は、TRPチャネルの中でも特に多様な刺激を感受することができるチャネルです。極端な話、培地をピペッティングするだけで開いてしまいかねないチャネルのため、安定したデータを取れるようになるまでにかなりの時間がかかりました。

安定したデータがとれるようになったある日、今度はTRPA1が細胞でほとんど発現しなくなり、測定どころではなくなりました。原因を解明するには至らなかったのですが、どうやら細胞がマイコプラズマに感染していたようです。あくまで想像にすぎませんが、感染によって炎症性サイトカインやNOが生産され、TRPA1が常時活性化して細胞毒性が亢進していたのではないかと考えています。

結局、すべての生物試料を新品に入れ替えることで問題を解決しました。原因を究明することでSerendipityを得る場合もあるのでしょうが、時には一からやり直すことも必要であると学びました。

 

Q4. 将来は化学とどう関わっていきたいですか?

どんな形であれ、人の役に立つ“ユニークな”化合物を見つけていきたいと考えています。そのために、生理活性物質の同定・合成・展開から作用機序解析の手法まで、一貫した“知識”と“技術”を深めていくことが当面の目標です(すべてを自分でやるわけではないにしても、人との効率的な連携に知識は必須だと思います)。特に、もともと専門ではなかった有機合成化学を、もっと腰を据えて学ぶべきだと思っています。芸術的な天然物合成や、これまでにない反応開発を自分で行うのは難しいにしても、知識としての蓄えはこれからも積極的に行っていき、共同研究の可能性を常に探っていきたいと考えています。いずれ機会があれば、ユニークなテーマを持たせたケミカルライブラリーの構築にもチャレンジしたいです。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

まず、最後までこの寄稿文に目を通していただきありがとうございます。

昨今、科学分野の壁がこれまでになく薄く、あるいは融合しつつあるように感じています。そんな中で、“ユニークさ”を備えた研究するためには、今まで以上にコラボレーションを推進していくことが大切だと考えています。

事実、ご紹介した研究は、多くの人とのコラボレーションで成り立っています。特に、森 泰生 先生(京都大学)、三尾 和弘 先生(産業技術総合研究所)を筆頭に、共同研究者の方々には大変お世話になりました。ここに感謝を述べたいと思います。

読者の方々に置かれましても、学会等でお目通りの際は、ご指導を賜りますようお願い申し上げます。

関連リンク

研究者の略歴

sr_J_Takaya_1高屋 潤一郎

所属: 京都大学大学院医学研究科医学専攻 ケミカルバイオロジー分野 上杉研究室 博士後期課程4年

テーマ: 反応性化合物ライブラリを起点としたTRPA1の活性化メカニズム解析

略歴:1985年 神奈川県伊勢原市出身。2009年 茨城大学理学部卒業後、同大学大学院理学研究科に進学。2012年 茨城大学大学院理学研究科修了後、京都大学大学院医学研究科に進学。現在に至る。

受賞歴:2015年12月 Student Poster Competition Award at 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem 2015)、2015年6月 新学術領域研究「天然物ケミカルバイオロジ-~分子標的と活性制御~」第7回若手研究者ワークショップ優秀発表者

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 天然物の生合成に関わる様々な酵素
  2. 私がケムステスタッフになったワケ(1)
  3. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  4. Ph.D.化学者が今年のセンター試験(化学)を解いてみた
  5. 有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次…
  6. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  7. マテリアルズ・インフォマティクスにおけるデータの前処理-データ整…
  8. キノリンをLED光でホップさせてインドールに

注目情報

ピックアップ記事

  1. 化学構造式描画のスタンダードを学ぼう!【応用編】
  2. ゲノムDNA中の各種修飾塩基を測定する発光タンパク質構築法を開発
  3. ジイミド還元 Diimide Reduction
  4. 炭素ー炭素結合を切る触媒
  5. アイルランドに行ってきた②
  6. 個性あるTOC
  7. 第84回―「トップ化学ジャーナルの編集者として」Anne Pichon博士
  8. 劉 龍 Ryong Ryoo
  9. ステファン・ヘル Stefan W. Hell
  10. リアルタイムで分子の自己組織化を観察・操作することに成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー