[スポンサーリンク]

化学者のつぶやき

サイコロを作ろう!

[スポンサーリンク]

有機化合物の中には、「サイコロ」があるって知ってますか?

キュバン(Cubane)という炭化水素がそれに当たります。こんな化合物が存在すること自体も驚きですが、実際に合成してしまう人がいたことにも驚きです。最近では、こんな分子に医薬としての使い道が見えつつあるという、更に驚きの事実も出てきつつあります。

cubane_2

史上初の合成が達成されて以来50年が経ちます[1]が、今回はこのキュバン分子にフォーカスした話題を紹介したいと思います。

キュバンとは?

キュバンは、サイコロ状の炭素骨格を持った炭化水素C8H8です。全炭素8個がすべて等価であり、かつ通常の炭素-炭素結合(sp3混成構造)からは、大きくひずみがかかっています。分子サイズは小さいですが、足がかりとなる官能基が無いこと、環ひずみと対称性がきわめて高いことから、かえって合成しにくい分子といえます。

炭素4員環(シクロブタン)の環ひずみエネルギーは109.9kJ/molと見積もられています。それが6つ緊密に縮環したキュバンは、それよりかなり大きなひずみエネルギー(161.5kJ/mol)を内包します。このため合成できたとしても、自発的に爆発的分解してしまうのではないかとも考えられていたのです。

しかし、1964年、フィリップ・イートンらのグループがその化学合成・単離に成功し、予想外に安定な結晶性化合物であることを明らかにしました[2]。キュバンの結晶はきらきら輝く菱面体晶(rhombic crystal)で、常圧下・常温よりやや高い温度で昇華し、封管中で133.5℃の融点を示しました。また分解は220℃以上で起きることもわかりました。

キュバンの物性(論文[1]より引用)

キュバンの物性(論文[1]より引用)

キュバンを合成する

以下に、イートンらの合成経路[2]を示します。ひずみの少ない5員炭素環を含むかご形分子を段階的に環縮小し、キュバン骨格へと導くというのが基本戦略となっています。

まずはブロモシクロペンタジエノンが自発的に二量化を起こしたものが鍵中間体となります。適切な保護をしたのち、[2+2]光環化で4員環構造の一部を組み上げます。そこから塩基性条件に伏すことでFavorskii転位を進行させ、5員環を4員環に縮小させます。この過程でカルボン酸が余りますが、これはラジカル脱炭酸条件によって飛ばしてしまいます。以下同じプロセスを繰り返すことにより、キュバンの合成に成功しています。

cubane_3

その後、この合成経路をベースにJohn Tsanaktsidisらがさらに短工程・大量合成可能な経路(>500g)を確立しています[3]。

世界最強の爆薬:オクタニトロキュバン

キュバンは合成してみると意外にも安定な分子でした。しかしながら大きな歪みエネルギーを内包する分子であることも確かです。不安定化学結合/官能基を沢山付けてやると、さらに高エネルギー化合物になると考えられます。

イートンらはこの発想のもと、キュバンの頂点にニトロ基を置換させた化合物オクタニトロキュバンを設計し、1999年に合成しました。

cubane_4

この分子は理論上、世界最強の爆薬であるとされています。合成も構造決定もかなり大変だったようですが、その報告[4]には見事な1本の13C NMRデータが示されています。合成コストが非常に高いため、爆薬としての実用化はされないと言われていますが・・・

オクタニトロキュバンの14N-decoupled 13C NMRチャート(論文[4]より)

オクタニトロキュバンの14N-decoupled 13C NMRチャート(論文[4]より)

医薬への応用

昨今の医薬業界は転換期を迎えており、良い低分子医薬が出づらくなっているという背景があります。この問題を受け、最近では特殊構造を持つビルディングブロックの探索[5]が進んでいます。

キュバンも実はその一つ[6]で有り、ベンゼン環の生物学的等価体として活用可能とされています。もともとはキュバンを合成したイートン教授による発想[1b]であり、いろいろな事例[5b]から実効性がありそうなことも分かっていたようです。最近になって、ようやくこの事実が丁寧に調べられました[7]。

両者は似ても似つかない形に見えるのですが、下図のようにナナメからキュバンを眺めるのがポイントです。実はベンゼン環と似通ったサイズ・形を持っているということがわかります。

(論文[7]より引用)

(論文[7]より引用)

実際に様々な既知医薬品のベンゼン環をキュバンに置き換えて(下図)調べて見たところ、同等もしくはオリジナル以上の薬理活性を示すことが分かりました。非平面構造化による溶解性の向上、強固なsp3C-H結合を持つことによる代謝耐性の獲得などが、要因として考察されています。

cubane_synth_9

医薬品のキュバン置換体(論文[7]より引用)

おわりに

これ以外にも分子の多面体は考えられており、正四面体分子テトラヘドラン(置換基有り)、正12面体分子ドデカヘドランなどはすでに合成が達成されています。興味のある方はこちらの資料(PDF)などをご覧になってみると良いでしょう。機会があれば、また詳しく取りあげてみたいと思います。

(2000/7/3 by ボンビコール、2016/2/7 加筆修正 by cosine)
(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです)

関連文献

  1. (a)”Cubane: 50 Years Later” Biegasiewicz, K. F.; Griffiths, J. R.; Savage, G. P.; Tsanaktsidis. J.; Priefer, R. Chem. Rev. 2015, 115, 6719. DOI: 10.1021/cr500523x (b) “Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century” Eaton, P. E. Angew. Chem. Int. Ed. Engl. 199231,1421. DOI: 10.1002/anie.199214211
  2. (a) “The Cubane System” Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 962. DOI: 10.1021/ja01059a072 (b) ”Cubane” Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 3157. DOI: 10.1021/ja01069a041
  3. (a) “Barton Decarboxylation of Cubane-1,4-dicarboxylic Acid: Optimized Procedures for Cubanecarboxylic Acid and Cubane” Eaton, P. E.; Nordari, N.; Tsanaktsidis, J.; Upadhyaya. S. P. Synthesis 1995, 501. DOI: 10.1055/s-1995-3961 (b) “Dimethyl Cubane-1,4-dicarboxylate: A Practical Laboratory Scale Synthesis” Bliese, M.; Tsanaktsidis, J. Aust. J. Chem. 1997, 50, 189. doi:10.1071/C97021 (c) “Pilot-Scale Production of Dimethyl 1,4-Cubanedicarboxylate” Tsanaktsidis, J. et al. Org. Process Res. Dev. 2013, 17, 1503. DOI: 10.1021/op400181g 

  4. “Hepta- and Octanitrocubanes” Zhang, M.-X.; Eaton, P. E.; Gilardi, R. “Hepta- and Octanitrocubanes”. Angew. Chem., Int. Ed. 2000, 39, 401. DOI: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P
  5. (a) “New and unusual scaffolds in medicinal chemistry”  Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514.  DOI: 10.1039/c1cs15119c (b) “Pharmaceuticals that contain polycyclic hydrocarbon scaffolds” Stockdale, T. P.; Williams, C. M. Chem. Soc. Rev. 2015, 44, 7737.   DOI: 10.1039/C4CS00477A
  6. “Cubanes in Medicinal Chemistry: Synthesis of Functionalized Building Blocks” Wlochal, J.; Davies, E. D. M.; Burton, J. Org. Lett. 2012, 16, 4094. DOI: 10.1021/ol501750k

  7. “Validating Eaton’s Hypothesis: Cubane as a Benzene Bioisostere” Williams, C. M. et al. Angew. Chem. Int. Ed. 2016DOI: 10.1002/ange.201510675

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分…
  2. ウイルスーChemical Times 特集より
  3. ゲームプレイヤーがNatureの論文をゲット!?
  4. 魔法のカイロ アラジン
  5. 誰でも参加OK!計算化学研究を手伝おう!
  6. 実験手袋をいろいろ試してみたーつかいすてから高級手袋までー
  7. なんと!アルカリ金属触媒で進む直接シリル化反応
  8. 味の素ファインテクノ社の技術と社会貢献

注目情報

ピックアップ記事

  1. お”カネ”持ちな会社たち-1
  2. 分子光化学の原理
  3. スタンリー・ウィッティンガム M. S. Whittingham
  4. エレクトライド:大量生産に道--セメント原料から次世代ディスプレーの材料
  5. ボーディペプチド合成 Bode Peptide Synthesis
  6. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  7. iPadで計算化学にチャレンジ:iSpartan
  8. 第150回―「触媒反応機構を解明する計算化学」Jeremy Harvey教授
  9. エナンチオ選択的α-アルキル-γ-ラクタム合成
  10. カンプトテシン /camptothecin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP