[スポンサーリンク]

化学者のつぶやき

アミロイド線維を触媒に応用する

[スポンサーリンク]

触媒機能をもつタンパク質は「酵素」と総称されます。大抵は分子量1万を超える大きなものです。

しかしその活性部位は、全体に比してさほど大きな割合を占めていません。ここまで巨大なものじゃ無くとも、明確な構造のペプチドであれば、触媒の土台として使えるんじゃ無かろうか・・・?

そういう発想から生まれたペプチド性触媒が、2014年のNature Chemistry誌に報告されました。その名も「アミロイド線維触媒」です[1]。今回はこれを取りあげて見たいと思います。

アミロイドって何?

アミロイド(amyloid)とは、クロスβシート構造をもつ線維を形成し、不溶性となるペプチド(タンパク質)の総称です。小さな分子サイズでありながら比較的明確な構造をとれるという、他のタンパクには無い特性を持っています。

アミロイドは様々な難治性疾患(アミロイドーシス)に関連があるとされています。たとえばアルツハイマー病は、アミロイドβタンパクが凝集することで引き起こされるのでは?との仮説が古くから提唱されています。

アミロイドβ(1-40)のクロスβシート構造モデル(論文[2]より)

アミロイドβ(1-40)のクロスβシート構造モデル(論文[2]より)

すぐさま不溶性の線維となってしまうためとにかく扱いづらく、生化学的性質を調べるだけでもしばしば難航します。病原ペプチドでもあるため、研究者からは困ったちゃん扱いされがちな分子でもあります。

 

困りものを役立つものに

今回の研究のポイントは、アミロイド線維を形成しうるペプチド(なんとわずか7残基!)が自己集積によって触媒機能を発現できることを、初めて示したことにあります。

疎水性アミノ酸と親水性アミノ酸が交互に並ぶアミロイドペプチドLKLKLKL[3]を参考に、著者らはリジンをヒスチジンに変えた配列、Ac-LHLHLHL-CONH2を用意しました。

これに亜鉛(ZnCl2)を混ぜてやります。するとアミロイド線維のヒスチジン側鎖が配位子として亜鉛を担持します。ヒスチジン側鎖は単座配位なので、普通の短鎖ペプチドでは金属が上手く担持されません。しかし一旦アミロイド線維を形成すれば、ペプチド同士・ヒスチジン側鎖同士が近接し、亜鉛を多座で担持出来るようになります。またこのキレート結合によって、土台となる線維構造も安定化されます。CD解析・蛍光アッセイを行ってみると、βシートに富む凝集体を形成すること、つまりアミロイド性を有することが確認されました。

こうして出来た金属-アミロイド錯体を使って、著者らは触媒応用を試みています。亜鉛の複核ルイス酸触媒として働くだろうとの発想です。果たして、4-ニトロフェニル酢酸エステルの加水分解反応に対する触媒能を持つことが示されました。

著者らはその後、アミノ酸配列を種々変えたペプチドを用意し、構造-触媒活性相関を行っています。最終的に最も活性の高いペプチド配列、Ac-IHIHIQI-CONH2を見いだすことに成功しました。

amyloid_cat_2

亜鉛キレート型アミロイド触媒の模式図(論文[1]より引用・改変)

反応速度解析を行うと、このアミロイド触媒は酵素のように振る舞うこと、すなわち飽和特性や活性のpH依存性などがあることが示されました。

既に述べたとおり、タンパク質が触媒能を発揮するには、長鎖ペプチドが適切に降りたたまれてできる巨大な3次構造が必要と考えられてきました。しかし本報告のように「短いペプチドが寄せ集まることで規則構造を形成し、触媒能が発揮される」という事実は興味深い知見といえます。

この事実をして著者らは、「アミロイド線維は進化の過程で、酵素に至るまでの中間形としての役割があったのかもしれない」と触れています。こちらも興味深い着眼だと思います。

 

「アミロイド触媒」の可能性

ペプチドは固相法で迅速合成できる分子であるため、無限の構造展開が可能です。今回はごくごく簡単な反応への応用しか示されていませんが、金属との組み合わせ次第では、別種の触媒反応へも展開可能かも知れません。

またそもそもがペプチドなので、生体適合性の高い触媒の創製につながりうる考え方だとも思えます。アミロイドにつきものの毒性をどうにか抑えることができれば、低分子触媒〜酵素の中間を埋める「第三の触媒」としての活路を見出せるやもしれません。

触媒構造が激しい条件下でも安定かどうか、触媒活性をどこまで上げられるのか、化学選択性が出せる触媒になるのか・・・ということは未だ気になりますが、今後の研究を待つ必要があるでしょう。

取り扱いが難しいとされる「アミロイド」ですが、これ以外にも、ナノ材料バイオテクノロジーなどへの応用先も模索されつつあるようです[4]。今後どういう発展を見せていくか、要注目の方向ですね。

関連論文

  1.  (a) “Short peptides self-assemble to produce catalytic amyloids” Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.;Smith,T. A.; Hu,X.; DeGrado, W. F.; Korendovych, I. V. Nat. Chem. 2014, 6, 303. doi:10.1038/nchem.1894 (b) “Protein chemistry: Catalytic amyloid fibrils” Aumüller, T.; Fändrich, M. Nat. Chem. 2014, 6, 273. doi:10.1038/nchem.1904
  2. “A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR” Robert Tycko et al. Proc. Natl. Acad. Sci. USA 2002, 99, 16742. doi:10.1073/pnas.262663499
  3. (a) “Induction of peptide conformation at apolar/water interfaces: a study with model peptides of defined hydrophobic periodicity.” DeGrado, W. F. ; Lear, J. D. J. Am. Chem. Soc. 1985, 107, 7684. DOI: 10.1021/ja00311a076 (b) “Protein design, a minimalist approach.” DeGrado, W. F.; Wasserman, Z. R.; Lear, J. D. Science 1989, 243, 622. DOI:10.1126/science.2464850
  4.  (a) “Nanomechanics of functional and pathological amyloid materials” Knowles, T. P. J.; Buehler, M. J. Nature Nanotech. 2011, 6, 469. doi:10.1038/nnano.2011.102 (b) “Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials” Cherny, I.; Gazit, E. Angew. Chem. Int. Ed. 2008, 47, 4062. DOI: 10.1002/anie.200703133

関連書籍

[amazonjs asin=”1493929771″ locale=”JP” title=”Protein Amyloid Aggregation: Methods and Protocols (Methods in Molecular Biology)”][amazonjs asin=”B00PIHGYXC” locale=”JP” title=”アルツハイマー最新研究(ニューズウィーク日本版e-新書No.22)”]

外部リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. TLCと反応の追跡
  2. 博士課程と給料
  3. NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフト…
  4. 人を器用にするDNAーナノ化学研究より
  5. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)
  6. お望みの立体構造のジアミン、作ります。
  7. 小説『ラブ・ケミストリー』聖地巡礼してきた
  8. 韮山反射炉に行ってみた

注目情報

ピックアップ記事

  1. 柴田科学 合成反応装置ケミストプラザ CP-400型をデモしてみた
  2. 四酸化オスミウム Osmium Tetroxide (OsO4)
  3. 薬剤師国家試験にチャレンジ!【有機化学編その1】
  4. メチルトリメトキシシラン (methyltrimethoxysilane)
  5. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buchwald研より
  6. ねじれがあるアミド
  7. ChemDraw for iPadを先取りレビュー!
  8. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チューリヒ校・Bode研より
  9. アスタチンを薬に使う!?
  10. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP