[スポンサーリンク]

化学者のつぶやき

イミンを求核剤として反応させる触媒反応

[スポンサーリンク]

 

極性変換(Umpolung)はその名の通り、プラス(+)をマイナス(–)に、マイナスをプラスに変えることをいいます。有機反応化学では、マイナス(求核剤)が一般的にプラス(求電子剤)に攻撃するため、もしプラスとマイナスの関係を逆にすることができれば、理論的にはお互いの可能性を倍増させることができます。

例えば、ハロゲン化アルキル(R–X)は求電子剤ですが、マグネシウムを作用させるとグリニャール反応剤(R–Mg–X)となり、求核剤へと”変身”します。ケトンなどのカルボニル化合物は、求電子剤ですが、ジチアンとすると、求核剤としての性質をもたせることができます。

これらは化学量論量以上の試薬(マグネシウム、ジチオール)が必要ですが、触媒的に行うとなると、代表的なものはStetter反応。通常、求電子剤であるアルデヒドに、触媒量のN-アルキルチアゾリウム塩を作用させると電子不足オレフィンなどに攻撃する反応、すなわちアシル基が求核的に働きます。数多くの不斉触媒反応も報告されており、かなり汎用性の高い反応です。

では、イミンではいかがでしょうか。アルデヒドがアミンと反応した形ですので、これも既にたくさんの報告があるかとおもいきや、実は分子内反応の限定的なもの、分子間反応であっても、イミン同士がカップリングしたいわゆるイミンのベンゾイン縮合型しか報告がありませんでした[1]。

しかし最近、アメリカBrandeis大学のDengらは、初めてイミンを極性転換させる相間移動触媒の開発に成功したのです(図 1)。触媒存在下、塩基性条件でイミンに求電子剤を作用させると、高ジアステレオ、高エナンチオ選択的にC–C結合が形成されます。

2015-10-04_07-41-31

図1 イミンの極性転換の概念図

“Catalytic asymmetric umpolung reactions of imines”
Wu, Y.; Hu, L.; Li, Z.; Deng, L.;Nature 2015, 523, 445. DOI: 10.1038/nature14617

 

では今回は本反応について簡単に紹介しましょう。

 

どうやってイミンを極性転換させる?

Dengらは、2012年にイミン1にシンコナアルカロイド系の有機分子触媒C-1を作用させると、[1,3]-水素転位によって4が生成することを発見していました(図 2a)[2]。この転位反応が2-アザアリルアニオン3を経由して進行すると仮定し、プロトンの代わりに求電子剤(電子不足オレフィン)を化学選択的に付加させることができればイミンが求核的にオレフィンに付加した6が得られると考えました(図2b)。

2015-10-04_07-42-04

図2 イミンの触媒的な極性転換反応の設計

イミンの電子不足オレフィンへの付加反応

Dengらは、水素アクセプターであるビシクロオクタン骨格中の窒素に置換基を導入することで、相間移動触媒にするとともに、化学選択性の増大を図りました。その置換基を種々検討したところ、化学選択性、ジアステレオ選択性、エナンチオ選択性および収率の向上には、置換基の特徴として1) 嵩高くコンフォメーションの自由度が低いこと2) 電子豊富な芳香環であることが重要でした(図 2a)。最もよい触媒はC-2で、実際、イミンと、電子不足オレフィンとしてクロトンアルデヒド、触媒量の水酸化カリウムを用いてトルエン中室温で撹拌すると、イミンがオレフィンに付加した目的の生成物が高ジアステレオ・エナンチオ選択的に得られることがわかりました。反応は0.01 mol%の触媒量でも進行し、グラムスケールの反応にも適用可能でした(図 2b)。アルドイミンを基質とした場合では、TBS基をもつC-2よりもt-Bu基をもつC-3の方が効率良く反応が進行します(図 2a, 2c)。イミンの置換基R′がアレーンやアルケニルのような立体的に嵩高い置換基であっても、高いエナンチオ選択性を保持して反応が進行することから、本触媒の基質適用性の広さを伺うことができます。

2015-10-04_07-42-49

図3 開発した触媒によるイミンの極性転換反応 a: 触媒の構造式 b: グラムスケールでの反応と生成物の誘導化 c: 基質適用範囲の検証

 

言うまでもないですが、キラル中心にアミンが結合した化合物は、自然界においてはペプチド、医薬品においてはサブリル(抗てんかん剤)やレナリドミド(多発性骨髄腫の治療) をはじめ多く存在しています[3]。これまで、イミンを求電子剤として使ってきた反応は数多く存在しますが(Mannich反応ストレッカーアミノ酸合成フォルスター・デッカー アミン合成ウギ反応 など)、今回のように極性転換を行い求核剤としてもちいることができれば、化合物の合成戦略の幅も広がりますね。以上、今回の紹介した反応はイミンを求核剤として用いる第一歩を踏み出したもので、今後の進展を楽しみにしたいと思います。

 

関連文献

  1. (a) Reich, B. J. E.; Justice, A. K.; Beckstead, B. T.; Reibenspies, J. H.; Miller, S. A.; J. Org. Chem. 2004, 69, 1357. DOI: 10.1021/jo035245j (b) Ogle, J. W.; Zhang, J.; Reibenspies, J. H.; Abboud, K. A.; Miller, S. A.;Org. Lett. 2008, 10, 3677. DOI: 10.1021/ol8012765 (c)  Liu, X.; Gao, A.; Ding, L.; Xu, J.; Zhao, B.;Org. Lett. 2014, 16, 2118. DOI: 10.1021/ol500522d (d) Matsumoto, M.; Harada, M.; Yamashita, Y.; Kobayashi, S.;Chem Commun 2014, 50, 13041. DOI: 10.1039/C4CC06156J
  2. Wu, Y.; Deng, L. J. Am. Chem. Soc. 2012, 134, 14334. DOI: 10.1021/ja306771n

 

関連書籍

[amazonjs asin=”3843368511″ locale=”JP” title=”Asymmetric Transition Metal-Catalysed Alkyl Addition to Imines”]

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. Carl Boschの人生 その6
  2. 過酸がC–H結合を切ってメチル基を提供する
  3. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…
  4. 酸化グラフェンの光による酸素除去メカニズムを解明 ―答えに辿り着…
  5. 有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含…
  6. 薬学会年会も付設展示会キャンペーンやっちゃいます
  7. 触媒でヒドロチオ化反応の位置選択性を制御する
  8. 「シカゴとオースティンの6年間」 山本研/Krische研より

注目情報

ピックアップ記事

  1. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler-Napieralski Isoquinoline Synthesis
  2. ケムステの記事を導出しています
  3. ファイザーがワイスを買収
  4. 第89回―「タンパク質間相互作用阻害や自己集積を生み出す低分子」Andrew Wilson教授
  5. ポンコツ博士の海外奮闘録⑩ 〜博士,中和する〜
  6. 洗浄ブラシを30種類試してみた
  7. 「温故知新」で医薬品開発
  8. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohexaazaisowurtzitane (HNIW)
  9. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  10. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁石の巻

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー