[スポンサーリンク]

化学者のつぶやき

アミドをエステルに変化させる触媒

[スポンサーリンク]

アミドはタンパク質のアミノ酸をつなぐ重要な結合様式であり、天然物や医薬品においてもよくみられる官能基です。アミノ基上の窒素原子の非共有電子対がカルボニル基と共役することで、アミドの炭素–窒素結合は二重結合性を獲得し、求核剤に対して高い安定性を示すことが知られています(図 1a)。そのため、アミドの炭素–窒素結合の切断は困難です。

生物は細胞機能の制御やタンパク質の分解のため特定のアミド結合(ペプチド結合)の切断を行いますが、この切断は、生体内のプロテアーゼを触媒とし、温和な条件(体温、ほぼ中性)で進行します。一方、合成化学においては、一般的に強酸や強塩基、高温などの激しい反応条件を必要とするのが常識です(図 1b)。

2015-10-16_02-59-11

図1 アミドの反応性

 

安定なアミド結合をどーにかして変換するためには、あるトリックを使えば可能となります。具体的な例は示しませんが、アミドを強制的にねじって共役をきってみたり、アミドのカルボニルをより活性化するために、金属がうまく配位できるような置換基を窒素上に導入してみたり。そのようなトリックを使わなければ、やっぱりアミドは安定です。大事なことなのでもう一度いいますが常識です

最近その常識を覆すような反応が最近報告されました。米国カリフォルニア州立大学のHoukGargらは強酸、強塩基をもちいない温和な条件でのアミドのエステル化反応を開発したのです。

 

“Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds”

Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K.;Nature2015, 524, 79.

DOI: 10.1038/nature14615

 

ではどのようにアミド結合を切断(活性化)したのでしょうか?みていきましょう。

 

アミド結合を活性化する

著者らは、アミドの炭素–窒素結合(C–N結合)を遷移金属触媒で活性化することで、エステル化反応を進行させようと考えました。すなわち、C–N結合が遷移金属触媒に酸化的付加した活性種2に対して、求核剤を作用させることでカルボニル基に求核剤が付加した化合物3とアミン4が得られると想定しました(図 2a)。

検討の結果、遷移金属触媒にフェノール誘導体[1]やアニリン誘導体[2]などの強固な炭素–ヘテロ原子結合の活性化が可能であるニッケル触媒を、求核剤はアルコールを用いることでアミドからエステルへの変換反応を可能としたのです(図 2b)。

 

2015-10-16_03-09-36

図2 アミド結合の遷移金属触媒による活性化

 

基質適用範囲

本反応は芳香族アミドに限られますが、芳香族上の置換基は電子求引基、供与基に関わらず適用可能であり、ヘテロ芳香族アミドに対しても反応は問題なく進行します。窒素上の置換基は、アルキル基のみでは反応は起こらず、フェニル基や電子求引性の置換基がある場合に反応は進行します(図 3a)。求核剤は、嵩高いアルコールや糖のような複雑なアルコールも適用できます(図 3b)。アミドとエステルが共存し、不斉点をもつ化合物もアミドが選択的にエステル化され、脱離したアミノ酸誘導体のエナンチオ過剰率も保持されるようです (図 3c)。

2015-10-16_03-10-19

図3 ニッケル触媒を用いたアミドのエステル化反応

 

反応機構について

推定反応機構を図4に示します。初めに触媒1のNHC配位子が一つ解離し、芳香族アミドの芳香環が1に配位することで中間体2を形成します。続いて、ニッケルにC–N結合の酸化的付加が起こり、3を経て配位子交換により中間体4となります。ニッケルの還元的脱離により中間体5を形成した後に、生成物の解離とともに触媒1が再生することで触媒サイクルは完結します 。

 

2015-10-16_03-10-53

図4 触媒サイクル

 

また、本反応機構において、1) 律速段階は酸化的付加であること 2) 反応全体の自由エネルギー変化は負となり、反応の進行を熱力学的に支持することをDFT計算により明らかとしています。

 

まとめ

今回著者らは、遷移金属触媒によるアミドの直接的なC–N結合の活性化にはじめて成功しました[3]。本反応により、アミドは変換しうる官能基としてみなすことができ、合成戦略の幅が拡がります。今回はアミドのエステル化の報告ですが、例えば、用いる求核剤を変えたり、脱カルボニル化反応[4]により、アミドを様々な官能基に変換できる可能性があります。結合活性化研究の未来とそれを実現させる優れた配位子および触媒の登場が楽しみですね。

 

参考文献

  1. Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Rev. 2011, 111, 1346. DOI: 10.1021/cr100259t
  2. Tobisu, M.; Nakamura, K.; Chatani, N. Am. Chem. Soc. 2014, 136, 5587. DOI: 10.1021/ja501649a
  3. Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Rev. 2015. ASAP. DOI: 10.1021/acs.chemrev.5b00386
  4. Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Am. Chem. Soc. 2012, 134, 13573. DOI: 10.1021/ja306062c

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. ポンコツ博士の海外奮闘録XVI ~博士,再現性を高める②~
  2. ラジカル重合の弱点を克服!精密重合とポリマーの高機能化を叶えるR…
  3. 化学系ラボでSlackを使ってみた
  4. 「重曹でお掃除」の化学(その2)
  5. 光刺激で超分子ポリマーのらせんを反転させる
  6. “つける“と“はがす“の新技術―分子接合と表面制御
  7. プロテオミクス現場の小話(1)前処理環境のご紹介
  8. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

注目情報

ピックアップ記事

  1. 相田 卓三 Takuzo Aida
  2. 1つの蛍光分子から4色の発光マイクロ球体をつくる
  3. 未来の化学者たちに夢を
  4. カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~
  5. 2007年度ノーベル化学賞を予想!(2)
  6. ビタミンB12を触媒に用いた脱ハロゲン化反応
  7. 藤沢の野鳥変死、胃から農薬成分検出
  8. 骨粗鬆症、骨破壊止める化合物発見 理研など新薬研究へ
  9. 2012年10大化学ニュース【前編】
  10. コケに注目!:薬や香料や食品としても

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP