[スポンサーリンク]

化学者のつぶやき

不安定化合物ヒドロシランをうまくつくる方法

[スポンサーリンク]

 

ヒドロシラン、特にトリメチルシラン(Me3SiH)、モノシラン(SiH4)は特異な臭気を有する無色の有毒気体です。加えて、自然発火性と爆発性を併せもつため、モノシランの使用においては爆発事故[1]が何度も起きており、その取り扱いには注意を要します。そのため、通常、防爆などの設備が整っていない研究室ではこれらを取り扱うことが困難です。

「じゃあ使わなければいいじゃん!」といったらそれまで。

取り扱い困難な化合物はあまり研究も進んでおらず、往々にして驚くべき性質が眠っているものものです(一概にはいえませんが)。まあ簡単にいえば研究者心をくすぐる”好敵手”なワケですね。

ではこれらをうまくつくる方法はないのか?

今回はこの「不安定ヒドロシラン類を実験室でうまくつくる方法」について、最近のベルリン工科大学大学のOestreichらの研究を紹介したいと思います。まずはヒドロシランの有機合成化学的な観点からみた有用性について簡単に説明しましょう。

 

ヒドロシランの有用性:ヒドロシリル化反応

2015-09-17_00-12-02

図1 ヒドロシリル化反応とその触媒

まずひとつはヒドロシリル化反応につかえるということ。ヒドロシリル化反応は、有機骨格にシリル基を導入する最も基本的な手法の一つです(図 1)。オレフィン、ケトン、イミンといった不飽和結合に対し、遷移金属触媒あるいはルイス酸存在下、ヒドロシランが付加反応を起こします。1956年のPt触媒(Speier触媒)を用いたオレフィンへのヒドロシリル化反応[1]を皮切りに、Pd[2]、Rh[3]、Ru[4]などの様々な遷移金属触媒を用いたもの、塩化アルミニウム[5]、トリス(ペンタフルオロフェニル)ボラン(B(C6F5)3) [6]といったルイス酸を用いたものが数多く報告されています。しかしながら、上述したようにヒドロシランは高い毒性や可燃性を有しており、特に低分子量のヒドロシランは常温で気体であるために、取り扱いが困難であることがこの反応の難点です。

 

では、Oestreichらがどのようにこの不安定なヒドロシラン類を合成したのか?みていきましょう。

 

取り扱い容易なトリメチルシラン前駆体1の開発

実は、低分子量のヒドロシラン類そのものを合成したわけではなくて、反応溶液中で簡単に発生させることができる「前駆体(等価体)」の開発を試みたのです。その結果、2013年に、液体で取り扱いの容易なMe3SiH前駆体1の開発に成功しています(図 2)[7]。この前駆体のデザインはB(C6F5)3を触媒としたヒドロシリル化反応がヒントとなっています。

すでに、嵩高いルイス酸であるB(C6F5)3がヒドロシランのケイ素–水素結合と相互作用し、水素がホウ素に配位した複合体2を形成する(I)ことが知られていました[8]。続いて2のシリル基が不飽和結合に付加し(II)、生成したカルボカチオンをヒドリドが捕捉することによってヒドロシリル化が進行します(III)。彼らはこの反応をもとに、Me3SiHの水素原子を「1,4-シクロヘキサジエニル基」で置き換えた1がMe3SiH前駆体として適用可能であると考えたのです。

すなわち、1,4-シクロヘキサジエニル基の4位の水素がホウ素に配位する(IV)ことで、シリルアレニウムイオン3が生成します(V)。続く、3の芳香族化によって、ベンゼンが配位したシリリウムイオン4が形成されます。得られた4に対して、ホウ素上のヒドリドが付加することでMe3SiHが生成すると同時にB(C6F5)3が再生する(VI)と考えました。

実際に、合成した1を触媒量のB(C6F5)3存在下オレフィンと反応させたところヒドロシリル化反応が進行し、Me3SiHを反応溶液中で容易に発生していることを確認しています。また後に、1とB(C6F5)3を用いたケトンおよびイミンのヒドロシリル化も報告しています[9]

2015-09-17_00-44-23

図2 Me3SiH前駆体1とその反応機構

 

安定なモノシラン前駆体5、6の開発およびヒドロシリル化反応への応用

さらにモノシラン(SiH4)の反応系中での発生法に着手したところ、ごく最近、SiH4前駆体5および6を合成し、これを用いたヒドロシリル化反応の開発に成功しました[10]

彼らはまずMe3SiH前駆体1を参考に、SiH4の水素原子を2カ所あるいは3カ所1,4-シクロヘキサジエニル基で置き換えた、SiH4前駆体5および6の合成を行いました(図3)。5および6は、2,5-シクロヘキサジエニルリチウムをトリクロロシランもしくはジクロロジエトキシシランへ求核置換させることによって1段階あるいは2段階で合成し、再結晶により単離することができました。合成した5および6触媒量のB(C6F5)3を作用させることで7とSiH4が生成していることを1H NMR測定によって確認でき、SiH4の前駆体として働くことがわかりました。

2015-09-17_00-46-49

続いて彼らは、5を用いて各種オレフィンに対するヒドロシリル化反応を行いました(図4a)。スチレン誘導体及び環状、鎖状オレフィンに対して反応は進行し、基質の嵩高さによって2回から4回ヒドロシリル化が進行した生成物が得られています。また、アルキンである3-ヘキシンに対してのヒドロシリル化は、トランス付加で進行しました。さらに1,4-シクロヘキサジエニル骨格は、ケイ素–水素結合の保護基として用いることが可能です。また、5と白金触媒を用いた1-オクテンのヒドロシリル化、続くB(C6F5)3による1,4-シクロヘキサジエニル基の脱保護によって、モノアルキルシラン8を合成しています(図 4b)。

2015-09-17_00-47-37

図5 モノシラン前駆体を用いたヒドロシリル化反応

 

このように、低分子量ヒドロシラン類を簡便に発生させることのできる「前駆体」を開発し、SiH4を用いたオレフィンやアルキンのヒドロシリル化反応へと展開しました。単純な構造ではあるものの、爆発性を有するため危険で取り扱いが困難であったSiH4を、簡便に安全に取り扱うことを可能とした本論文の意義は極めて大きいといえます。今後これらのヒドロシランを用いた研究が発展することを期待したいと思います。

 

参考文献

  1. (a) Chen, R. J.; Tsai, Y. H.; Chen, K. S.; Pan, R. H.; Hu, C. S.; Shen, C. C.; Kuan, M. C.; Lee, C. Y.; Wu, C. C. Process Saf. Prog. 2006, 25, 237. DOI: 10.1002/prs.10136 (b) Chang, Y. Y.; Peng, J. D.; Wu, C. H.; Tsaur, C. C.; Shen, C. C.; Tsai, Y. H.; Chen, R. J. Process Saf. Prog. 2007. 26, 155. DOI: 10.1002/prs.10194
  2. (a) Speier, J. L.; Webster, J. A.; Bernes, G. H. J. Am. Chem. Soc. 1957, 79, 974. DOI: 10.1021/ja01561a054  (b) Lewis, L. N.;Sy, K. G.; Bryant, G. L.; Donahue, P. E. Organometallics 1991, 10, 3750. DOI: 10.1021/om00056a055
  3. Yoshida, J.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 19, 2161. DOI: 10.1016/S0040-4039(01)86834-9
  4. (a) Ojima, I.; Kumagai, M. J.  Organomet. Chem. 1974, 66, C14. DOI: 10.1016/S0022-328X(00)93873-7 (b) Dickers, H. M.; Haszeldine, R. N.; Mather, A. P.; Parish, R. V. J. Organomet. Chem. 1978, 161, 91. DOI: 10.1016/S0022-328X(00)80914-6
  5. Esteruelas, M. A.; Herrero, J.; Oro, L. A. Organometallics 1993, 12, 2377. DOI: 10.1021/om00030a057
  6. Oertle, K.; Wetter, H. Tetrahedron Lett. 1985, 26, 5511. DOI: 10.1016/S0040-4039(01)80873-X
  7. Simonneau, A.; 
 Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 11905. DOI: 10.1002/anie.201305584
  8. (a) Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936. DOI: 10.1021/jo016279z (b) Rendler, S.; Oestreuch, M. Angew. Chem., Int. Ed. 2008, 47, 5997. DOI: 10.1002/anie.200801675 (c) Houghton, A. Y.; Hurmalainen, J.; Mansikkamäki, A.; Piers, W. E.; Tuononen, H. M.
 Nature Chem. 2014, 6, 983. DOI: 10.1038/nchem.2063
  9. Keess, S.; Simonneau, A.; Oestreich, M. Organometallics 2015, 34, 790. DOI: 10.1021/om501284a
  10. Simonneau, A.; Oestreich, M.;Nature Chem. 2015, ASAP. DOI: 10.1038/nchem.2329

 

関連書籍

[amazonjs asin=”904817791X” locale=”JP” title=”Hydrosilylation (Advances in Silicon Science)”]

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 分子びっくり箱
  2. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・K…
  3. 転職でチャンスを掴める人、掴めない人の違い
  4. アウグスト・ホルストマン  熱力学と化学熱力学の架け橋
  5. 計算化学:汎関数って何?
  6. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す
  7. ケムステVシンポ「最先端有機化学」開催報告(前編)
  8. CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基…

注目情報

ピックアップ記事

  1. テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ほう酸ナトリウム水和物 : Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Hydrate
  2. ヤコブセン転位 Jacobsen Rearrangement
  3. フォルスター・デッカー アミン合成 Forster-Decker Amine Synthesis
  4. 部分酸化状態を有する純有機中性分子結晶の開発に初めて成功
  5. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  6. 金属キラル中心をもつ可視光レドックス不斉触媒
  7. 第166回―「2次元量子材料の開発」Loh Kian Ping教授
  8. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  9. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつーの!: 井戸型ポテンシャルと曲率】
  10. PL法 ? ものづくりの担い手として知っておきたい法律

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP