[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (3)

[スポンサーリンク]

 「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第2回で紹介した金属エノラート法は、古典的条件の各種問題(交差反応化、立体制御、不可逆反応化、第1回記事参照)の解決に大きく貢献し、アルドール反応の使い勝手を飛躍的に向上させた。

この次なる課題とされたのは、立体中心を制御しつつ鏡像異性体の一方だけを選択的に作る方法、即ち不斉アルドール反応の開発である。

そこで研究者たちは、キラル補助基を持つエノラート基質を反応させ、ジアステレオ選択的に立体制御を行う方法をまず考え出した。第3回ではこの方法について紹介したい。

キラル補助基不斉アルドール反応の決定版:Evansアルドール反応

キラル補助基法における歴史的なブレイクスルーとなったのはMITの正宗悟らの報告だが、その後ハーバード大学のDavid A. Evansらによって、アミノ酸由来のオキサゾリジノン補助基を使う手法(Evansアルドール反応)が開発された。この手法は条件も穏和で信頼性が大変高く、ほぼどのような基質でもsyn-アルドール体を与えることが知られている。(図1)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

高選択性の理由を理解するにあたって、いくつかのポイントがある。ボロントリフラート(ルイス酸)によって活性化されたイミドα位プロトンが、アミンによって引き抜かれてホウ素エノラートが生成する。この際、キラル補助基との立体反発のために、Zのホウ素エノラートが優位に生成してくる。このZ-ホウ素エノラートとアルデヒドが6員環遷移状態をとって反応し、syn体の生成物を与える。遷移状態において、キラル補助基はカルボニル基同士の双極子反発を避けるため、図2の[ ]内に示す方向を向いた状態で反応すると考えられている。アルデヒドはかさ高いイソプロピル基とは逆面から近づく。

図2:Evansアルドール反応の反応機構

図2:Evansアルドール反応の反応機構

このキラル補助基は、各種官能基に容易に変換可能であるため実用性が高い。 図3に例を示す。

図3:キラル補助基の変換例

図3:キラル補助基の変換例

Evansアルドール反応では決まった立体配置(syn体)しか得ることができないが、後に別の研究者によって変法が開発されており、現在では理論上考え得る全ての立体配置を同種の方法で生み出すことが出来るようになっている。

図4:Evansアルドール反応の各種変法

図4:Evansアルドール反応の各種変法

 

Evansアルドール反応の応用例

Evansアルドール反応は非常に信頼性が高く、大量合成にも適用可能で、立体化学の予測もしやすい。このため多くの複雑化合物合成に適用されてきた。不斉アリルホウ素化とならび、鎖状化合物の骨格構築+立体制御を行う目的には、現在でも定番的に使われる。図5はその応用例[1]であるが、ハイライトした不斉点と炭素-炭素結合は、Evansアルドール法にて構築されている。

図5:Evansアルドール反応を応用して全合成された天然物

図5:Evansアルドール反応を応用して全合成された天然物

ノバルティスのプロセス化学研究チームは、抗腫瘍活性天然物Discodermolide(13個の不斉点をもつ)の臨床試験への供給を意図し、60グラムもの量合成した[2]。この合成経路にて立体制御に強力な役割を果たしたのが、Evansアルドール反応である。最終的にはなんと25kgスケールでこの反応は実施されている。

図6:ノバルティスプロセスチームによるDiscodermolideの大スケール合成経路

図6:ノバルティスプロセスチームによるDiscodermolideの大量合成経路

本法の欠点を上げるとすれば、最終生成物に含まれないキラル補助基(これも別途合成が必要)が当量以上必要となってしまうために、トータルの原子効率や工程数の面で改善の余地があるということである。

次回はいよいよ、その問題解決を意図して研究されてきた、触媒的不斉アルドール反応について述べることにしよう。

関連文献

  1. Recent Review: Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry 2013, 24, 1149. doi:10.1016/j.tetasy.2013.08.011
  2. Mickel, S. J. et al. Org. Process Res. Dev. 2004, 8, 92, 101, 107, 113 and 122.
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ…
  2. 二酸化炭素をメタノールに変換する有機分子触媒
  3. Kindle Paperwhiteで自炊教科書を読んでみた
  4. テトラサイクリン類の全合成
  5. ケムステイブニングミキサー 2024 報告
  6. ACD/ChemSketch Freeware 12.0
  7. 逆電子要請型DAでレポーター分子を導入する
  8. ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

注目情報

ピックアップ記事

  1. 神戸製鋼所が特殊合金粉末を開発 金属以外の多様な材料にも抗菌性付加
  2. 化学企業のグローバル・トップ50が発表【2022年版】
  3. ウェブサイトのリニューアル
  4. 危険物に関する法令:行政手続き、許可取り消し
  5. ゲルマニウムビニリデン
  6. CRISPRの謎
  7. 第20回「転んだ方がベストと思える人生を」ー藤田 誠教授
  8. ゴールドバーグ アミノ化反応 Goldberg Amination
  9. 専門用語(科学英単語)の発音
  10. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー