[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (3)

[スポンサーリンク]

 「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第2回で紹介した金属エノラート法は、古典的条件の各種問題(交差反応化、立体制御、不可逆反応化、第1回記事参照)の解決に大きく貢献し、アルドール反応の使い勝手を飛躍的に向上させた。

この次なる課題とされたのは、立体中心を制御しつつ鏡像異性体の一方だけを選択的に作る方法、即ち不斉アルドール反応の開発である。

そこで研究者たちは、キラル補助基を持つエノラート基質を反応させ、ジアステレオ選択的に立体制御を行う方法をまず考え出した。第3回ではこの方法について紹介したい。

キラル補助基不斉アルドール反応の決定版:Evansアルドール反応

キラル補助基法における歴史的なブレイクスルーとなったのはMITの正宗悟らの報告だが、その後ハーバード大学のDavid A. Evansらによって、アミノ酸由来のオキサゾリジノン補助基を使う手法(Evansアルドール反応)が開発された。この手法は条件も穏和で信頼性が大変高く、ほぼどのような基質でもsyn-アルドール体を与えることが知られている。(図1)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

高選択性の理由を理解するにあたって、いくつかのポイントがある。ボロントリフラート(ルイス酸)によって活性化されたイミドα位プロトンが、アミンによって引き抜かれてホウ素エノラートが生成する。この際、キラル補助基との立体反発のために、Zのホウ素エノラートが優位に生成してくる。このZ-ホウ素エノラートとアルデヒドが6員環遷移状態をとって反応し、syn体の生成物を与える。遷移状態において、キラル補助基はカルボニル基同士の双極子反発を避けるため、図2の[ ]内に示す方向を向いた状態で反応すると考えられている。アルデヒドはかさ高いイソプロピル基とは逆面から近づく。

図2:Evansアルドール反応の反応機構

図2:Evansアルドール反応の反応機構

このキラル補助基は、各種官能基に容易に変換可能であるため実用性が高い。 図3に例を示す。

図3:キラル補助基の変換例

図3:キラル補助基の変換例

Evansアルドール反応では決まった立体配置(syn体)しか得ることができないが、後に別の研究者によって変法が開発されており、現在では理論上考え得る全ての立体配置を同種の方法で生み出すことが出来るようになっている。

図4:Evansアルドール反応の各種変法

図4:Evansアルドール反応の各種変法

 

Evansアルドール反応の応用例

Evansアルドール反応は非常に信頼性が高く、大量合成にも適用可能で、立体化学の予測もしやすい。このため多くの複雑化合物合成に適用されてきた。不斉アリルホウ素化とならび、鎖状化合物の骨格構築+立体制御を行う目的には、現在でも定番的に使われる。図5はその応用例[1]であるが、ハイライトした不斉点と炭素-炭素結合は、Evansアルドール法にて構築されている。

図5:Evansアルドール反応を応用して全合成された天然物

図5:Evansアルドール反応を応用して全合成された天然物

ノバルティスのプロセス化学研究チームは、抗腫瘍活性天然物Discodermolide(13個の不斉点をもつ)の臨床試験への供給を意図し、60グラムもの量合成した[2]。この合成経路にて立体制御に強力な役割を果たしたのが、Evansアルドール反応である。最終的にはなんと25kgスケールでこの反応は実施されている。

図6:ノバルティスプロセスチームによるDiscodermolideの大スケール合成経路

図6:ノバルティスプロセスチームによるDiscodermolideの大量合成経路

本法の欠点を上げるとすれば、最終生成物に含まれないキラル補助基(これも別途合成が必要)が当量以上必要となってしまうために、トータルの原子効率や工程数の面で改善の余地があるということである。

次回はいよいよ、その問題解決を意図して研究されてきた、触媒的不斉アルドール反応について述べることにしよう。

関連文献

  1. Recent Review: Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry 2013, 24, 1149. doi:10.1016/j.tetasy.2013.08.011
  2. Mickel, S. J. et al. Org. Process Res. Dev. 2004, 8, 92, 101, 107, 113 and 122.
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  2. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  3. Nature Reviews Chemistry創刊!
  4. ビニグロールの全合成
  5. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて②~
  6. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC…
  7. 化学研究ライフハック: 研究現場のGTD式タスク管理
  8. 結晶世界のウェイトリフティング

注目情報

ピックアップ記事

  1. ADEKAの新CMに生田絵梨花さんが登場
  2. 海藻成長の誘導物質発見 バイオ研
  3. 有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~
  4. PACIFICHEM2010に参加してきました!②
  5. イボレノリドAの単離から全合成まで
  6. リチウム二次電池における次世代電極材料の開発【終了】
  7. 合成生物学を疾病治療に応用する
  8. 室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとにペロブスカイト型硫化物で実現
  9. シアノヒドリンをカルボン酸アミドで触媒的に水和する
  10. 細菌ゲノム、完全合成 米チーム「人工生命」に前進

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー