[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第7回は林・石川らによるタミフルの全合成が題材でした(問題はこちら)。今回はその解答編になります。

High-Yielding Synthesis of the Anti-Influenza Neuramidase Inhibitor (-)-Oseltamivir by Three One-Pot Operations
Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem. Int. Ed. 2009, 48, 1304. doi: 10.1002/anie.200804883

High-Yielding Synthesis of the Anti-Influenza Neuraminidase Inhibitor (-)-Oseltamivir by Two “One-Pot” Sequences
Ishikawa, H.; Suzuki,T.; Orita,H.;  Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2010, 16, 12616. DOI: 10.1002/chem.201001108

解答・解説

本タミフル合成の鍵反応として使われているのは、独自開発した連続反応です[1]。シロキシプロリン触媒(林-ヨルゲンセン触媒)を用いる不斉マイケル付加から、アルケニルホスフェートエステルと炭素-炭素結合を作る形で、タミフルに必要な官能基/不斉点が備わった多置換シクロヘキセン環骨格をワンポットで得ます。

圧巻たる反応ですが、タミフル合成へと繋げるには一つ問題がありました。問題文にもあるとおり、5位の不斉点が逆になったものが取れてしまうのです。

next_move_7a_1

幸運にもここは立体化学が不安定なニトロ基α位なので、なんらかの方法でエピマー化させれば、欲しい構造に導くことが出来ます。

著者らも様々な条件を試しており、実際S体とR体が平衡になる条件を見いだしています。しかし片方だけに収束させることは困難を極めました。というのも計算によると、各ジアステレオマーの最安定配座はエネルギー差がごく僅かしかないのです。たとえ熱力学的平衡に導いても、両者の混ざりとして取れてきてしまうのです。ちなみにこの化合物達は分離も不可能。何とかしなければなりません・・・。

next_move_7a_2

この困難に直面した著者らの発想が冴え渡ります。

シクロヘキセン環をシクロヘキサン環へと変換してやることで、アキシアル/エクアトリアルの関係が明確となり、望みの立体へと異性化しやすくなるだろうと考えたのです。

この目的には合成終盤で取り外せる良い求核剤であるチオールのマイケル付加が選ばれました。そしてこの目論見は期待通りの効果を見せ、見事に欲しい立体へと収束させることに成功したのです。

next_move_7a_3

この変換をもとにさらに条件検討を重ねたすえ、ニトロアルケン原料(1グラム)からなんと60%の収率でタミフル(1.5グラム)を合成することに成功しています。また2013年には後続変換全て含めてワンポットで進行させるプロセスを見いだしてもいます[2]。合成化学のマイルストーンと呼ぶにふさわしい、素晴らしい成果だと思います。

さて、今回の問題はいかがだったでしょうか?みなさんは無事、Dead Endを回避できたでしょうか?

 

関連論文

  1. (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212. DOI: 10.1002/anie.200500599 (b) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. doi:10.1038/nature04820
  2. Mukaiyama, T.; Ishikawa, H.; Koshino, H.; Hayashi, Y. Chem. Eur. J. 2013, 52, 17789. doi:10.1002/chem.201302371

 

関連書籍

[amazonjs asin=”3527306447″ locale=”JP” title=”Dead Ends and Detours”][amazonjs asin=”3527329765″ locale=”JP” title=”More Dead Ends and Detours”]

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 研究者のためのCG作成術④(レンダリング編)
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニタ…
  3. 炭素をつなげる王道反応:アルドール反応 (4)
  4. アイルランドに行ってきた②
  5. MEDCHEM NEWS 32-1号「機械学習とロボティックス特…
  6. 東京化成工業がケムステVシンポに協賛しました
  7. 化学系ブログのインパクトファクター
  8. in-situ放射光X線小角散実験から明らかにする牛乳のナノサイ…

注目情報

ピックアップ記事

  1. 地球温暖化-世界の科学者の総意は?
  2. エステルからエーテルをつくる脱一酸化炭素金属触媒
  3. SDGsと化学: 元素循環からのアプローチ
  4. 全合成研究は創薬化学のトレーニングになり得るか?
  5. 第99回―「配位子設計にもとづく研究・超分子化学」Paul Plieger教授
  6. 2009年10大化学ニュース【Part2】
  7. 歯車クラッチを光と熱で制御する分子マシン
  8. NHPI触媒によるC-H酸化 C-H Oxidation with NHPI Catalyst
  9. 試薬会社にみるノーベル化学賞2010
  10. メタンハイドレートの化学 ~その2~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP