[スポンサーリンク]

化学者のつぶやき

環歪みを細胞取り込みに活かす

[スポンサーリンク]

創薬研究やバイオプローブの開発において、しばしば問題になるのが分子の膜透過性。特にオリゴヌクレオチドやタンパク質などの大きな分子は膜透過効率が低く、医薬応用の大きな障害となります。今回は分子の性質をうまくつかって、その障害の解決に取り組んでいる一例を紹介したいと思います。

 

細胞膜のなかに入りたい

膜透過効率を上げる手法として、「膜透過性ペプチド」(Cell-Penetrating Peptide:CPP)を利用する方法があります。CPPはアルギニンを多く含んだ塩基性のペプチドで、細胞膜を能動的に透過することが知られているからです。従って、取り込ませたいタンパク質やペプチドなどにCPPを結合させると、効率的に細胞内へ導入することができます。

しかし、CPPは細胞毒性を持つ、必ず機能するとは限らない(当たり前ですが)などの問題があります。

そこでCPPによらない、新しい膜透過機構として、膜透過性ポリジスルフィド(Cell-Penetrating poly(disulfide)s: CPDs)が開発されています。CPDは図 1に示したように、細胞表面のチオール基とジスルフィド交換反応を起こし、細胞表面に固定化されます。このときCPDに細胞内へ導入したい基質をつけておけば、基質はエンドサイトーシスなどを経て、細胞内に取り込まれます。[1]

 

図1 Schematic illustration of a cellular uptake via S-S exchange.

図1 Schematic illustration of a cellular uptake via S-S exchange.

 

さて、ジェノバ大学のMatileらは近年、このCPDsの応用としてsiCPDs(substrate-initiated, self-inactivating CPDs)を報告しました(Figure 2)。[2] これは、細胞内に導入したい分子をポリマー開始剤として用い、細胞膜透過に有利となるグアニジンを有するモノマーなどと重合することでポリジスルフィド化合物を合成し、膜透過させるものです。

 

図2 Concept of substrate-initiated, self-inactivating CPD transporters.

図2 Concept of substrate-initiated, self-inactivating CPD transporters.

 

環歪みを細胞取り込みに活かす

さらに最近Matileらは、高い反応性をもつ環状ジスルフィドが、ポリマー化しなくても、膜表面への固定化され、膜透過することを報告しました。

 

“Ring Tension Applied to Thiol-Mediated Cellular Uptake”

Gasparini, G.; Sargsyan, G.; Bang, E. K.; Sakai, N.; Matile, S. Angew. Chem, Int. Ed. 2015, 7328. DOI: 10.1002/anie.201502358

 

発光団としてカルボキシルフルオレセインを導入した化合物37をHeLa Kyoto細胞に添加し、フローサイトメトリーによってこれらの細胞の蛍光強度を測定しました(図 3)。ここから、最大の環歪みを持つ化合物3で蛍光強度が最大であり、環歪みの小さな化合物4,5、直鎖で環歪みを持たない化合物6,7の順に蛍光強度が小さくなることがわかりました。この結果は、細胞膜上でのジスルフィド交換反応がCSSC結合の二面角が小さいほど、すなわち反応性の高いジスルフィドほど、有利に反応が進行することを示唆しています。さらに論文中ではあらかじめ膜表面のチオール基を活性化または不活性化させた後に活性評価実験をおこなうことで、膜表面への固定化のメカニズムを検証しています。

 

図3 Flow cytometry data showing the fluorescence of HeLa Kyoto cells after incubation of fluorophores 2-8.

図3 Flow cytometry data showing the fluorescence of HeLa Kyoto cells after incubation of fluorophores 2-8.

 

さらにMatileらは先ほどのHeLa Kyoto細胞の顕微鏡写真を撮影することに成功しています。この結果から蛍光団が導入された環状ジスルフィド化合物34は細胞表面のチオールにトラップされているだけではなく、細胞内に取り込まれていることが確認できます。化合物34のCSSC二面角の差はわずかであるにもかかわらず(図 4)、この環歪みの小さな差が非常に有意に働いていますね。

 

図4 CLSM images of HeLa Kyoto cell after incubation of 3 and 4.

図4 CLSM images of HeLa Kyoto cell after incubation of 3 and 4.

 

このように、細胞取り込みを促進する分子として大きな環歪みを持ったジスルフィド化合物に着目し、この環歪みが細胞取り込みに大きな影響を与えることを明らかとしました。膜透過の機構に関してはまだ十分な議論がされていませんが、 彼らは今回の手法が一般的なエンドサイトーシスとは異なる機構で起こっている可能性を指摘しています。本研究は、膜透過を促進する小分子設計の新しいコンセプトを提案しただけでなく、その膜透過の機構という基礎研究の観点からも面白い内容だと思います。

 

関連書籍

[amazonjs asin=”1607619180″ locale=”JP” title=”Cell-Penetrating Peptides: Methods and Protocols (Methods in Molecular Biology)”]

 

参考文献

  • Torres, A.; Gait, M. Trends in Biotechnology 2012, 30, 185. DOI: 10.1016/j.tibtech.2011.12.002
  • Gasparini, G.; Bang, E.-K.; Molinard, G.; Tulumello, D.; Ward, S.; Kelley, S.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136, 6069. DOI: 10.1021/ja501581b

 

外部リンク

 

 

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 第94回日本化学会付設展示会ケムステキャンペーン!Part I
  2. 分子の聖杯カリックスアレーンが生命へとつながる
  3. 韮山反射炉に行ってみた
  4. 科学ボランティアは縁の下の力持ち
  5. START your chemi-story あなたの化学を探す…
  6. ポンコツ博士の海外奮闘録XVIII ~博士,WBCを観る~
  7. 【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直…
  8. 農薬DDTが大好きな蜂

注目情報

ピックアップ記事

  1. 含ケイ素四員環-その2-
  2. パラジウム価格上昇中
  3. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカルベノイド・Darzens反応・直接的触媒的不斉アルキニル化・光環化付加反応
  4. Nature Chemistry:Research Highlight
  5. その置換基、パラジウムと交換しませんか?
  6. 抽出精製型AJIPHASE法の開発
  7. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part I
  8. 「つける」と「はがす」の新技術|分子接合と表面制御 R3
  9. ジョンソン・クライゼン転位 Johnson-Claisen Rearrangement
  10. ポンコツ博士の海外奮闘録XX ~博士,日本を堪能する② プレゼン編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー