[スポンサーリンク]

化学者のつぶやき

あなたはどっち? 絶対立体配置

[スポンサーリンク]

突然ですが、問題です。

以下の化合物の中心は不斉炭素です。絶対立体配置R または S で決定してください。

CIP-priority-01

正解は…R だそうです。筆者はしばらく迷いましたが正解できました。

しかし、ChemBioDraw 12 で求めてみると…なんと S と判定されるのです。なぜでしょう? というわけで、正解だった方も不正解だった方も、もう一度考えてみましょう。

 

Cahn-Ingold-Prelog 則のおさらい

今回のトピックは大学の有機化学では必ずと言っていいほど現れる Cahn-Ingold-Prelog 則です。「炭素原子に結合している4つの置換基のうち、“優先順位”の最も低いものが視線の奥になるように分子を配置する(図で a>b>c>d とすると、d が奥)。3つの置換基が時計回りに並んでいれば R、反時計回りに並んでいれば S の立体配置とする。」というものですね。

CIP-priority-02

ここまでは大丈夫ですね。問題はこの“優先順位”の決め方です。全部で5段階の決定手順があるのですが、そのうち必要になる頻度が高い規則が上位2段階です。

  1. 原子番号の大きいものが優先する。
  2. 質量数の大きいものが優先する。

この決定手順は、1番目の規則で順位が決まらなかった場合に2番目の規則を適用し、それでも決まらなかった場合は…のように進みますね。今回の問題にこれを適用してみましょう。

 

問題の解法

まず、中心炭素に結合した4つの置換基を列挙します。「-CH2OH」「-12CH2CH3」「-14CH2CH3」「-H」ですね。炭素原子に直接結合している原子を比較すると、原子番号の最も小さい H が優先順位が最低となりますので、奥に配置します…というのは出題の段階で済んでいます。あとは残る3つの置換基の順位です。

「1. 原子番号の大きいものが優先する」を念頭に、まずは炭素原子に直接結合した原子をみると、すべて(質量数は違えど)原子番号6の炭素原子です。では、次に見るべきはどこでしょう?

ここで「2. 質量数の大きいものが優先する」に移ってしまうと間違いです。まだ原子番号の規則を隅々まで適用していませんね。そのすぐ隣の原子を比較しましょう。「-CH2OH」だけが原子番号8の酸素原子で、優先順位が高くなります。次を比較しますが、「-12CH2CH3」と「-14CH2CH3」はともに炭素原子で、原子番号の比較だけではこの2つの置換基は区別できませんでした。

そこで初めて「2. 質量数の大きいものが優先する」の規則の出番です。また中心炭素に結合した原子に立ち戻ります。今度は質量数14と12の炭素ですから、優先順位は「-14CH2CH3」>「-12CH2CH3」であることがわかります。これで優先順位がすべて決定しました。もう答えが R になるのはご理解いただけますね?

 

何が問題なのでしょうか?

この問題は R or S Let’s vote – NextMove Software で取り上げられています。主要な化学構造式を描くツールには絶対立体配置を自動決定する機能がありますが、上の化合物の場合に判定を誤ることが指摘されていました。ChemBioDraw ですら S と判定したというのは正直驚きます。

いかがでしょう? 命名法はあくまで有機化学の中でも軽視されがちですが、深入りしてみるとこのように紛らわしい例もでてきます。ChemBioDraw などのソフトウェアは自動で絶対立体配置を同定してくれますが、時にはこのような誤りが起こりうることに注意し、自分の手で確認することも必要ですね。

 

関連記事

 

Avatar photo

アセトアミノフェン

投稿者の記事一覧

工学(修士);専門は応用化学・生物物理学。会社員です。

関連記事

  1. 鉄錯体による触媒的窒素固定のおはなし-1
  2. 化学探偵Mr.キュリー8
  3. 2007年度ノーベル医学・生理学賞決定!
  4. 有機合成化学協会誌2023年8月号:フェノール-カルベン不斉配位…
  5. ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバル…
  6. マテリアルズ・インフォマティクスにおける分子生成の基礎
  7. “Wakati Project” 低コス…
  8. ご注文は海外大学院ですか?〜選考編〜

注目情報

ピックアップ記事

  1. メタロペプチド触媒を用いるFc領域選択的な抗体修飾法
  2. ロバート・バーグマン Robert G. Bergman
  3. 第89回―「タンパク質間相互作用阻害や自己集積を生み出す低分子」Andrew Wilson教授
  4. リック・ダンハイザー Rick L. Danheiser
  5. 全フッ素置換シクロプロピル化試薬の開発
  6. ChemTile GameとSpectral Game
  7. 眼精疲労、糖尿病の合併症に効くブルーベリー
  8. P-キラルホスフィンの合成 Synthesis of P-chirogenic Phosphine
  9. ハーバート・ブラウン―クロスカップリングを導いた師とその偉業
  10. ベンゼンの直接アルキル化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー