[スポンサーリンク]

化学者のつぶやき

最長のヘリセンをつくった

[スポンサーリンク]

高次ヘリセン

ヘリセンはベンゼン環がオルト位で縮環した多環芳香族炭化水素の一つであり、構成するベンゼン環の数n を用いて[n]ヘリセンのように命名します。ベンゼン環の水素同士の立体障害によりらせん形をとるため、不斉炭素を持たないがキラリティを発現する興味深い分子の1つです。

その構造の美しさとユニークさから多くの化学者が研究の対象としてきましたが、nが大きい高次ヘリセンの合成は困難を極めます。特に、[13]ヘリセンより大きいものはベンゼン環が3 層重なった構造になり、中央のベンゼン環は上下に位置するベンゼン環の圧迫により立体的なひずみを解消しにくくなります (図1) 。これまで、1975 年にMartin らによって合成された[14]ヘリセンが最長のヘリセンであり、この記録は40 年間破られることはありませんでした。[1]

しかし最近、東京大学の藤田教授・山形大学の村瀬准教授らによって未踏の[16]ヘリセンが合成され、ヘリセンの最長記録は更新されました。今回はこの合成法について紹介したいと思います。

“One-Step Synthesis of [16]Helicene”

Mori, K.; Murase, T.; Fujita, M. Angew. Chem. Int. Ed. 2015. Early View. DOI: 10.1002/anie.201502436

 

2015-05-25_17-42-54

図1 高次ヘリセンとその合成の困難さ

 

鍵となるヘリセン前駆体

ヘリセンやその類縁体の合成にはいくつかの方法が報告されていますが、最もよく用いられている合成法は、(Z)-スチルベン骨格を前駆体として用いた酸化的光環化反応(Oxidative photocyclization)です。

(Z)-スチルベン骨格が前駆体として好まれる理由としては、この骨格が  Wittig  反応によって容易に合成可能であることや、光によって容易に E/Z 異性化が起こるため  E/Z が混在した状態で光環化が行えることが挙げられます。先に述べた  Martin  らによる[14]ヘリセン合成でもこの骨格による酸化的光環化反応が用いられており、彼らは[3] + [6] + [3][4] + [4] + [4]からそれぞれ合成に成功しています(図 2)。

2015-05-25_17-44-12

図2. 酸化的光環化反応と[14]ヘリセンの合成

一方、[6]+[6]を前駆体とした酸化的光環化反応では[13]ヘリセンを合成できないことが最近報告されていました。[3]

そこで筆者らは、反応前駆体として大きな[n]ヘリセンを用いてそれらを繋げるのではなく、小さな芳香環ユニットを複数の電子環状反応で繋げてヘリセンを合成するほうが効率的であると考えました。特に、[1]+[2]の酸化的光環化反応が選択的に[4]ヘリセンを与えることに注目し  (図 3)、筆者らはサブユニットとして[1][2](ベンゼンとナフタレン)のみを用いたヘリセン合成戦略を立てました。

2015-05-25_17-44-25

図3

 

過去の報告から、  [1]+[1]+[1]または[2]+[2]の組み合わせでは[5]ヘリセンではなく、さらに反応が進行したベンゾペリレンが生成すること、[2]+[1]+[2]では環化反応によってアセン型に縮環してしまうことがわかっています。これらを考慮し、筆者らは前駆体が[2]+[1]+[1]+[2]+[1]+[1]+[2]の配列でなくてはならないと考えました(図 4)。

 

2015-05-25_17-44-41

図4

 

この設計指針の妥当性は、前駆体[2]+[1]+[1]+[2]の酸化的光環化反応によって、[9]ヘリセンが従来の方法と同程度の収率で得られたことから確認できます(図 5)。

 

2015-05-25_17-44-54

図5

 

[16]ヘリセンの合成

筆者らはこの合成指針に従い、Wittig 反応によって[16]ヘリセンの前駆体 1 を合成しました  (図 6)。なお末端にある TIPSO(triisopropylsilyl  ether)は反応前駆体の溶解性を向上させるために導入しています。

2015-05-25_17-45-08

図6

 

前駆体 1 に対して 90ºC で Hg ランプを 48 時間照射することで、TIPSO-[16]ヘリセンが収率 7%で得られました。構造は X 線結晶構造解析によって決定され、予想通りのらせん状の 3 層構造であることが確認されました。また、1H  NMR では芳香族領域にある 2 つのプロトンが大きく高磁場にシフトしており(δ=5.51 と5.78;  図 8-A における Hp と Hq)、これらのプロトンは芳香環上に重なっていることが示唆されました。さらに、図 7 のように 3 段階の変換で TIPSO 基を除去し、無置換の[16]ヘリセンを得ることにも成功しています。無置換[16]ヘリセンの X 線結晶構造は得られていないが、1H NMR と MALDI-TOF MS から化合物を同定しています。(図 8)

 

2015-05-25_17-45-40

図8

 

以上のようにベンゼンとナフタレンという炭素芳香族の基本骨格を適切に配置することで、一段階の酸化的光環化反応でこれまで達成されていない高次ヘリセンの合成に成功しました。なお今回の成果は最長ヘリセンの記録更新だけでなく、光環化による高次ヘリセン合成の前駆体設計に新しい方向性を示したといえます。

ただ最後に、ちょっと気になるところが。タイトルのOne step synthesisってどこからOne stepなんでしょう?未踏化合物の合成なので普通に(First) Synthesis of [16]Heliceneの方が良い気がします。

 

参考文献

  1. Martin, R. H.; Baes, M. Tetrahedron 1975, 31, 2135. DOI: 10.1016/0040-4020(75)80208-0
  2. Gingras, M. Chem. Soc. Rev. 2012, 42, 968. DOI: 10.1039/C2CS35154D
  3. Roose, J.; Achermann, S.; Dumele, O.; Diederich, F. Eur. J. Org. Chem. 2013, 2013, 3223. DOI: 10.1002/ejoc.201300407

 

外部リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. Brevianamide Aの全合成:長年未解明の生合成経路の謎…
  2. アルキルラジカルをトリフルオロメチル化する銅錯体
  3. 新規性喪失の例外規定とは?
  4. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子
  5. 三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立…
  6. 引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性…
  7. ダイヤモンド構造と芳香族分子を結合させ新たな機能性分子を創製
  8. 第18回 Student Grant Award 募集のご案内

注目情報

ピックアップ記事

  1. 第54回天然有機化合物討論会
  2. メリークリスマス☆
  3. 有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン触媒系・環状カーボネート・素粒子・分子ジャイロコマ・テトラベンゾフルオレン・海洋マクロリド
  4. ノーベル化学賞への道公開
  5. フッ化セシウムをフッ素源とする立体特異的フッ素化有機分子の合成法の開発
  6. 明るい未来へ~有機薄膜太陽電池でエネルギー変換効率7.4%~
  7. MIDAボロネートを活用した(-)-ペリジニンの全合成
  8. 研究室での英語【Part1】
  9. 新たな要求に応えるために発展するフッ素樹脂の接着・接合技術
  10. 免疫(第6版): からだを護る不思議なしくみ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP