[スポンサーリンク]

化学者のつぶやき

既存の農薬で乾燥耐性のある植物を育てる

[スポンサーリンク]

 

現在地球上の人類の6人に1人が砂漠化の影響を受けていると言われています。科学的な見地からの砂漠を含めた乾燥地の緑化は、様々な意見があるとは思いますが、地球温暖化や食糧問題の解決のために推進すべき研究の1つだと思います。

さて、今回刻一刻と広がっている砂漠化に歯止めをかけれるかもしれない、乾燥耐性のある植物を育てる試みとして、新しい手法が報告されていましたので紹介したいと思います。

 

気孔ー植物の呼吸口

植物は気孔とよばれる2つの孔辺細胞にかこまれた小さな孔をもちます。植物は環境変化に応じてこの孔を開閉し、光合成に必要な二酸化炭素の取り込みや蒸散などの植物と大気間のガス交換を調節しています(図 1a)。この気孔の閉鎖を制御している植物ホルモンがアブシシン酸(ABA)です(図 1b)。乾燥ストレスをうけた植物はABAを生合成することで気孔を閉じ、体内からの水の蒸散量を抑え乾燥から身を守っています。

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

 

ABAの作用機序を解明する

ABAは今から50年以上前の1963年に発見されていましたが、ABAがどのタンパク質に作用して気孔の開閉に関与するのか全くの謎でした。

その作用機序を解明するために、受容タンパク質の単離に成功したのがABAの発見から50年以上を経た2009年。その理由は機能が重複した複数の受容体が存在するためでした。この冗長性を回避するため、米国カリフォルニア大学リバーサイド校の若手科学者Cutlerらのグループは化学遺伝的(ケミカルジェネティクス)スクリーニングにおいて、単一もしくは数個の受容体を標的とする分子(選択的アゴニスト)を用いることで同定を試みたのです。

詳細は述べませんが、CutlerらはABAの受容体タンパク質PYR1を初めて同定することに成功しました。[1]この研究により、PYR1によるABAの受容が気孔の閉鎖を引き起こすことが明らかになりました。

 

PYR1アゴニストの開発の難航

標的タンパク質が決まれば、高価で入手困難なABAにかわり、PYR1に結合して機能する小分子(PYR1アゴニスト)を作ることで、植物を乾燥から守ることができます。しかし、新しい農薬の開発と認可の獲得には通常、約10年以上の期間が必要とされており、早急な実現は困難でした。

一方で、入手容易で安全性が実証されている既存の農薬をABAの代わりにもちいることができれば、開発、認可を減ることなく、乾燥地帯での農業に大きく貢献できます。

 

PYR1を既存の農薬用に”改変する”

その方法の1つとして、Cutlerらは、PYR1のABA結合部位の立体構造を既存の農薬に合わせて新しく作りかえることで、既存の農薬をABAの代わりとして使うことを考えたのです。

しかし、「言うは易し、行なうは難し」が研究にはつきものです。

改変したPYR1がABAと結合してしまうと、植物が自ら産生するABAと農薬が競合してしまいます。そのため、目的とする改変タンパク質はABAと結合しないことが求められます。

これまでの研究で、59番目のリシン残基(59K)はABAのカルボン酸部位との結合に重要であることが知られていました。

彼らはリシン残基(59K)をアルギニン(R)に置換すると、ABAとの結合力が大きく低下することを見出しました。さらにリシン残基(59K)をアルギニン(R)に置換したPYR1(K59R)のアミノ酸残基をいくつか置換することで、ついに、ABAに結合しないが、mandipropamid(既存の市販農薬)には結合できるPYR1MANDIを開発することに成功しました(図2、図3)。[2]

 

図2. ABAとPYR1の結晶構造(左図)、mandipropamideとPYR1MANDIの結晶構造(右図)

図2. ABAとPYR1の結晶構造(左図)、mandipropamidとPYR1MANDIの結晶構造(右図)

 

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamide-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamide存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamid-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamid存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

 

PYR1MANDIの能力はいかに?

開発したPYR1MANDIを遺伝子組み換え技術によりトマトとシロイヌナズナにそれぞれ導入し、得られた遺伝子組み換えトマトとシロイヌナズナを用いてmandipropamid存在下での葉の温度を測定したところ、気孔が閉鎖し蒸散量が低下したことに由来する温度上昇が観測されました(図 4a,b)。さらに、乾燥環境下におけるPYR1MANDIの組み換えシロイヌナズナの生育を観察したところ、mandipropamid存在下で優れた乾燥耐性が確認されました (図 4c)。

 

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamide存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamide存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamide存在下での乾燥耐性の評価。

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamid存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamid存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamid存在下での乾燥耐性の評価。

 

今後の展開

もちろん遺伝子組み換えですので、食物に使うことは憚られます。そのため、主なターゲットは砂漠の緑化など食べない植物になります。今後、彼らの開発した技術による乾燥地の緑化と農業開発への展開を期待したいとお思います。

 

関連文献

  1. Sang-Youl Park et al. Science 2009 DOI: 10.1126/science.1173041
  2. Park, S.-Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, DOI: 10.1038/nature14123

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. テトラサイクリン類の全合成
  2. ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~
  3. OIST Science Challenge 2022 (オンラ…
  4. NMRの化学シフト値予測の実力はいかに
  5. シス優先的プリンス反応でsemisynthesis!abeo-ス…
  6. KISTECおもちゃレスキュー こども救急隊・こども鑑識隊
  7. ハラスメントから自分を守るために。他人を守るために【アメリカで …
  8. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化

注目情報

ピックアップ記事

  1. 2022 CAS Future Leaders プログラム参加者募集
  2. Marcusの逆転領域で一石二鳥
  3. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  4. 地域の光る化学企業たち-1
  5. ケムステVシンポまとめ
  6. リンダウ会議に行ってきた④
  7. 花粉症 花粉飛散量、過去最悪? 妙案なく、つらい春
  8. ケムステイブニングミキサー2015を終えて
  9. タンパク質の構造と機能―ゲノム時代のアプローチ
  10. アルミニウム工業の黎明期の話 -Héroultと水力発電-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー