[スポンサーリンク]

化学者のつぶやき

なんと!アルカリ金属触媒で進む直接シリル化反応

[スポンサーリンク]

 

ご存知のようにヘテロ芳香環を有する医薬品や有機材料は数多く存在します。これらに対するシリル基(R3Si-)の導入(シリル化反応)はその性質を変換させるだけでなく、様々な官能基へと変換可能なプラットホームとなるため合成的有用性を秘めています。

ヘテロ芳香環のシリル化反応は、ヘテロ芳香環を有機金属反応剤に変換した後に、求電子的なシリル化剤([SI]-LG)を作用させる方法が最も一般的でした(図1上)。

しかしながらこの手法では、自然発火性のリチウム反応剤(R–Li)やグリニャール反応剤(R–MgX)を化学量論量用いる必要があります。また生じた有機金属反応剤が強い求核剤となるため基質適用範囲が限られていました。

近年では、イリジウムやロジウムなどの遷移金属触媒を用いた触媒的炭素–水素結合の直接C–Hシリル化反応が開発されていますが、高価な遷移金属触媒をもちいるため、大スケールの合成には適用しづらいといった難点があります(図1下)[1]

 

図1 従来のシリル化反応

図1 従来のシリル化反応

 

この2つの代表的なシリル化反応に対して、最近、Nature誌にカリフォルニア工科大学のStoltzGrubbsらのグループらが“第三”のシリル化反応を報告しました。

 

“Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst”

Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80–84.

DOI:10.1038/nature14126

 

今回報告された反応は、触媒的かつヘテロ芳香環のC–H結合を[SI]–Hを用いて直接的にシリル化します。触媒としてはなんとアルカリ金属塩基であるカリウムtert-ブトキシド(KOt-Bu)を使うとのこと。KOt-Buは一般的に強塩基として用いられますが、それを触媒とした反応とはいったいどのようなものでしょうか。それでは簡単に見てみましょう。

副反応からはじまった研究

この反応開発のきっかけとなったのは2013年にGrubbsが開発したアリールエーテルの還元的開裂反応です[2]。ジベンゾフランに対して、トリエチルシラン(3〜5当量)と当量のKOt-Buを加え、加熱することでエーテル結合(炭素–酸素結合)の切断が起こりフェノール誘導体が得られます(図2)。

その反応の副生成物として、思わぬ化合物が得られたのです。この副生成物は、電子豊富な芳香環のC–H結合を直接シリル化しされた化合物です。つまり、KOt-Buを触媒量にして副生成物の収率を向上させることが可能となれば、触媒的なC–H結合シリル化が実現できます。そこで、芳香環としては電子豊富なヘテロ芳香環を選び、反応の最適化を図りました。

 

図2 開発のきっかけとなった炭素–酸素結合開裂反応

図2 開発のきっかけとなったアリールエーテルの炭素–酸素結合開裂反応

 

新規C-Hシリル化反応と反応機構

反応最適化の結果、触媒量(20 mol%)のKOt-Buとトリエチルシラン(3当量)を用いることでインドールのC2位選択的なC–Hシリル化を達成しています。それ以外にも40種以上のヘテロ芳香環のC–Hシリル化を試しており、比較的電子豊富なヘテロ芳香環ならばかなり有用な反応であるといえます。さらにGloriusらの手法[3]を用いてこの反応における官能基耐性を調査しています。これらの詳細については論文をご覧ください。

しかし気になるのは反応機構です。一体どのようにしてこの反応は進行しているのでしょうか。

著者らははじめに異なるヘテロ芳香環を用いた競合実験を行っています(図3a)。電子豊富なヘテロ芳香環であるほど反応性は下がっているため、求電子的置換反応とは相補的な反応性であると示唆されます。

さらにフリーラジカルを有するTEMPOなどを添加することで反応は進行しなくなることから、ラジカルが生成していることが考えられます(図3b)。しかしながらピリジンに対しては反応が進行しないため、ヘテロ芳香環へラジカル付加する反応(ミニスキ反応)とは異なるタイプの反応であることが示唆されます。

また、添加剤としてエポキシドを加えても全く反応に影響を与えなかったためシリルアニオン種(R3Si–K)が生じる機構も考えにくい結果となりました(図3c)。

 

図3 反応機構解明に向けて

図3 反応機構解明に向けた各種実験

 

これらの結果から、本反応はこれまで知られている炭素–水素結合官能基化反応とは全く異なる機構で反応が進行していることが示唆されます。

 

大量合成や合成最終段階にも使える

さて、未知の反応機構で進行するこの反応はどれほどの有用性があるのでしょうか。著者らは様々な応用を試みていますが、その一部を紹介します。

この反応は100 gスケールで行うことが可能であり、濾過と蒸留を行うことで簡便かつ大量にシリル化体を得ています(図4上)。

また、抗ヒスタミン剤であるthenalidineや抗血小板薬であるticlopidineの合成最終段階での誘導化も可能としています(図4下)。

 

図4 合成的有用性

図4 合成的有用性

 

合成の初期段階においても最終段階においてもこの反応を用いることができるため、幅広い用途があることがわかります。この他の応用についてもぜひ論文に目を通してみてください。

今回の報告では反応機構の解明までは達成されませんでしたので、今後詳細な検討により明らかとなることに期待したいと思います。

 

参考文献

  1. (a)Cheng, C.; Hartwig, J. F. Science 2014, 343, 853-857. DOI:10.1126/science.1248042 (b)Lu, B.; Falck, J. R. Angew. Chem. Int. Ed. 2008, 47, 7508–7510. DOI:10.1002/anie.200802456
  2. Fedorov, A.; Toutov, A. A.; Swisher, N. A.; Grubbs, R. H. Chem. Sci. 2013, 4, 1640–1645. DOI:10.1039/c3sc22256j
  3. Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597–601. DOI:10.1038/NCHEM.1669

 

関連書籍

[amazonjs asin=”3319070185″ locale=”JP” title=”Metal Free C-H Functionalization of Aromatics: Nucleophilic Displacement of Hydrogen (Topics in Heterocyclic Chemistry)”]

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10…
  2. 中性子線を利用した分析法
  3. 不正の告発??
  4. BASFとはどんな会社?-1
  5. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  6. 化学探偵Mr.キュリー8
  7. CRISPRの謎
  8. セブンシスターズについて① ~世を統べる資源会社~

注目情報

ピックアップ記事

  1. ナノスケールの虹が世界を変える
  2. 未来社会創造事業
  3. 2009年10大分子発表!
  4. 小林製薬、「神薬」2種類を今春刷新
  5. リベロマイシンA /Reveromycin A
  6. 磁性流体アートの世界
  7. 化学Webギャラリー@Flickr 【Part5】
  8. 小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出
  9. ケミカルバイオロジー chemical biology
  10. フッ素 Fluorine -水をはじく?歯磨き粉や樹脂への応用

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー