[スポンサーリンク]

化学者のつぶやき

新しい太陽電池ーペロブスカイト太陽電池とは

[スポンサーリンク]

レオです。今回はここ最近太陽電池業界を賑わせている話題の太陽電池であるペロブスカイト(perovskite)太陽電池について紹介します。お時間のある方はどうぞお読みください。

ペロブスカイトと初期のペロブスカイト太陽電池の報告

 

6570D05B-7A1E-4BAE-84F0-0C440CD5D113

Perovskiteの生みの親であるロシアの科学者、Lev. Perovski[1]

まずペロブスカイトについて簡単ですが説明します。ペロブスカイトとはチタン酸カルシウム(灰チタン石, CaTiO3)の結晶構造を発見したロシアの研究者、Lev. Perovskiにちなんで命名された結晶構造のことです。ペロブスカイト型結晶構造を有する化合物には強誘電体を示すチタン酸バリウム(BaTiO3)など非常に機能性の高い化合物が多く知られています。

ペロブスカイト化合物を太陽電池に用いた最初の報告例は桐蔭横浜大学宮坂教授ら研究グループです[2]

2009年に、宮坂らは色素増感型太陽電池の色素部分にペロブスカイト結晶構造を有するCH3NH3PbI3を用いて変換効率3.9%を達成しました。しかし このとき開発された太陽電池のホール輸送材料にはヨウ素を含む電解液を用いていました。そのため電荷分離層であるペロブスカイト材料であるCH3NH3PbI3層が電解液で侵されてしまい寿命や効率がでませんでした。

そこで同グループはその課題を解決するために2012年、イギリスのオックスフォード大学と共同で研究を行い、ホール輸送層に電解液を用いない全固体型色素増感型太陽電池に、ペロブスカイト結晶構造を有する同じペロブスカイト材料のCH3NH3PbI2Clを用いた太陽電池を作製しました[3]。このとき最大変換効率10.9%という当時のハイブリッド型薄膜太陽電池の中では非常に高い変換効率を達成し、以降ペロブスカイト系太陽電池は大変注目を集めることとなりました。

 

66CD8B0A-EDF2-4D0C-BFC0-E3F0A0C3B360

変換効率10.9%を達成した素子構造(左)とその断面電子顕微鏡(SEM)図(右)[4]

電極であるフッ素ドープされた酸化スズ(FTO)基板の表面上に、

  1.  電子輸送とFTOのラフネスを抑える効果及び、逆電子移動を抑制する効果のある酸化チタン緻密層
  2. perovskite層の「足場」として、色素増感型太陽電池と同様に光を吸収する表面積を広くしperovskite層に光を多く吸収させることを目的とした多孔質酸化アルミニウム層
  3. 光を吸収し電荷分離並びに電子輸送の役割をもつ鉛perovskite層 (CH3NH3PbI2Cl)
  4. ホール輸送の役割をもつ2,2-,7,7-tetrakis-(N,N-di-p-methoxyphenylamine)9,9-spirobifluorene (Spiro-OMeTAD)層
  5. FTOの対極である銀(Ag)層

によってデバイスができています。この太陽電池の特徴は電極であるFTOとAg以外すべて塗布法で製膜しているということ、また材料の処理に必要な温度は酸化チタン緻密層と多孔質酸化アルミニウム層を焼結するために必要な温度550℃であり、単結晶シリコン太陽電池を作製するときに必要な温度1000℃に比べ大幅に低温で製膜できるといった点です。しかし工業製品化するにあたり歩留まりがわるいといった問題点がありその解決が求められました。

F858499F-EC4F-40C0-8526-ED1D1AE45003

2012年Science誌で発表された各太陽電池特性に対するヒストグラム[3] (濃色: porousTiO2, 淡色: porousAl2O3をmesoporous層として使用)

特性のばらつきが多い原因はperovskite層に欠陥が生じ、下地の電子輸送の役割をする酸化チタン層とその上に積層するホール輸送層が直接接触してしまいその結果リークしてしまうといった点です。perovskite層の欠陥が生じない製膜法の開発が進みました。

 

新しいperovskite層成膜法の開発

最近、Grätzel教授ら研究グループはperovskite層に用いるCH3NH3PbI3を二段階に分けて成膜する「Sequential deposit法」を開発しました[4]

これはN, N-ジメチルホルムアミド (DMF) に溶かしたPbI2溶液を基板上にスピンコートしその後CH3NH3Iを2-プロパノールに溶解させ、その溶液にPbI2を製膜した基板を20秒浸しその後基板をベークすることでCH3NH3PbI3を成膜する手法です。この製膜法の開発により緻密なCH3NH3PbI3膜が簡便に製膜できるといったことから作製した太陽電池の特性のばらつきが抑えられるといった特徴があります。

 

0753FF91-CE01-479B-A06F-7EA858BDF81C

スピンコート法によって製膜されたCH3NH3PbI3 (図左側CとDの図)と 「Sequential deposit法」によって製膜されたCH3NH3PbI3(図右側DとFの図)の表面電子顕微鏡(SEM)[4]

この「Sequential deposit法」が開発されたことによって、perovskite系太陽電池がNational Renewable Energy Laboratory (NREL)のBest Research –Cell efficiencyに初めてデータが掲載されました。(載せられた変換効率のデータは14.1%)もうひとつCH3NH3PbI3-xClx層をPbCl2とCH3NH3Iとの共蒸着によって製膜し最大変換効率15.4%を達成し特性のばらつきを抑えることにも成功しています[5]

4B2C034D-21AC-4E38-80BD-DCDC3ABB89BC

塗布法と共蒸着法によって製膜したCH3NH3PbI3-xClxの比較表面電子顕微鏡(SEM)図[5]

この方法も「Sequential deposit法」と同様にperovskite層表面の欠陥を抑えることができる手法である。またこのとき作製した太陽電池は今まで紹介してきたペロブスカイト系太陽電池とは異なり色素増感型太陽電池のようにporousTiO2やporousAl2O3といった多孔質金属酸化物層がなくても太陽電池になり、緻密なperovskite層を製膜できることで多孔質金属酸化物層がなくても機能することが判明しました。

 

ペロブスカイト太陽電池の今後

そして今、変換効率の限界に挑戦しています。あらゆる太陽電池の効率を審査している国際再生可能エネルギー研究所(NREL)によると、ペロブスカイト太陽電池の最高効率は2015年2月17日現在20.1%です。この2、3年余りで変換効率が上がっており、将来的には単結晶Si太陽電池に並ぶ可能性も秘めています。今後、太陽電池が現在普及している単結晶Siではなく、ペロブスカイト太陽電池になる時代がくるのでしょうか。研究の進展をチェックしていきたいと思います。

C90EA23C-2C89-4891-9BCD-8C4DA4CC4B13

NRELが公表している各太陽電池の効率ロードマップ

参考文献

  1. 荻野 博、飛田博実、岡崎雅明 著、「基本無機化学 第二版」、東京化学同人 (2006)
  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009) DOI: 10.1021/ja809598r
  3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science, 338, 623, (2012)  DOI: 10.1126/science.1228604
  4. J. Burschka,N.Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazzeruddin, M. Gratzel, Nature, 499, 316 (2013) DOI: 10.1038/nature12340
  5. M. Liu M. B. Johnston, H. J. Snath, Nature, 501, 305 (2013) DOI: 10.1038/nature12509

 

関連書籍

[amazonjs asin=”4807906259″ locale=”JP” title=”基本無機化学”]
Avatar photo

レオ

投稿者の記事一覧

Ph.D取得を目指す大学院生。有機太陽電池の高効率を目指して日々研究中。趣味は一人で目的もなく電車に乗って旅行をすること。最近は研究以外の分野にも興味を持ち日々勉強中。

関連記事

  1. 水素製造に太陽光エネルギーを活用 -エタノールから水素を獲得し水…
  2. ラジカル重合の弱点を克服!精密重合とポリマーの高機能化を叶えるR…
  3. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  4. 軸不斉のRとS
  5. 抗酸化能セミナー 主催:同仁化学研究所
  6. Micro Flow Reactorで瞬間的変換を達成する
  7. 葉緑素だけが集積したナノシート
  8. アレ?アレノン使えばノンラセミ化?!

注目情報

ピックアップ記事

  1. 第129回―「環境汚染有機物質の運命を追跡する」Scott Mabury教授
  2. 第8回 学生のためのセミナー(企業の若手研究者との交流会)
  3. 科学雑誌 Newton 2019年6月号は化学特集!
  4. 進む分析機器の開発
  5. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  6. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成功
  7. N-カルバモイル化-脱アルキル化 N-carbamoylation-dealkylation
  8. ワイリーからキャンペーンのご案内 – 化学会・薬学会年会参加予定だったケムステ読者の皆様へ
  9. アスピリンの梗塞予防検証 慶応大、1万人臨床試験
  10. 文具に凝るといふことを化学者もしてみむとてするなり⑪:どっちもクリップの巻

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP