[スポンサーリンク]

化学者のつぶやき

カルベンで炭素ー炭素単結合を切る

[スポンサーリンク]

有機分子が反応する際にその化学結合に着目すると、結合の形成にはつねに結合の切断が伴います。分子骨格を構成する炭素ー炭素単結合(C–C結合)の形成と切断の完全制御は、分子モデルを組み立てるような自在合成が実現可能となるため、合成化学者の夢と言っても過言ではありません。

そのため古今東西、C–C結合の形成と切断に関連した反応開発研究が行われてきました。そのなかでも特に最近、”不活性な“C–C結合を切断し(C–C結合活性化)新しい結合を形成する触媒反応が注目されています。

そのC–C結合活性化反応には高活性な遷移金属触媒を用いることが常套手段となっていました。

ごく最近、N-ヘテロ環状カルベン(N-Heterocyclic Carbene; NHC)を用いたC–C結合切断・形成反応がシンガポール、Nanyang Technological UniversityのRobin Chiらのグループによって報告されました。

“Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone”

Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun.2015, 6, 6207. DOI: 10.1038/ncomms7207

 

有機分子触媒の1つである、NHC触媒がシクロブテノンのC–C結合切断を触媒することを初めて示しただけでなく、遷移金属触媒反応では困難であった立体選択的分子間反応に成功しました。今回は、遷移金属触媒のC–C結合活性化反応から、本論文の紹介までを述べたいと思います。

遷移金属触媒によるC–C結合活性化

上述したように、典型的なアプローチではC–C結合を切る『はさみ』の役割をするのはRhやNiなどの遷移金属触媒です(図1)。例えば、シクロブテノン環C–C結合(比較的反応しやすい”不活性”C–C結合)が遷移金属触媒に酸化的付加することでC–C結合が切断されます。その後、オレフィンと反応して挿入、還元的脱離によって生成物が得られます。

 

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

 

しかし、遷移金属触媒を用いることの欠点があります。それは遷移金属触媒あるいはその中間体の反応性が高すぎるため、化学選択性やエナンチオ選択性などの制御が困難であるということです。近年、遷移金属触媒を用いた不斉反応が報告されているものの分子内反応が多く、立体選択的に分子間反応を進行させるのは簡単ではありません(図2)。[1]

 

図2 遷移金属触媒を用いた分子内不斉反応の例

図2 遷移金属触媒を用いた分子内不斉反応の例

NHC触媒によるC–C結合活性化

そこで、Chiらは通常使用される遷移金属触媒ではなく、これまで使われていなかった有機分子触媒に着目しました。では、どのようにC–C結合を有機分子触媒で開裂したのでしょうか?

彼らは有機分子触媒としてキラルなNHC、基質にシクロブテノン1とイミン2を選び、図3のような機構を考えました。彼らの考えでは、NHC触媒が1のケトン部位に対して求核付加した後(step1)、C–C結合が開裂しビニルエノラート中間体が生成します(step2)。この中間体がイミン2と反応し形式的[4+2]環化反応が進行した後(step3)、NHCの触媒が再生するとともに目的物が得られるのではないかというものです。

 

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

 

Chiらの考え通り、NHC触媒前駆体Dを用いてシクロブテノン1aとイミン2aを反応させたところ、目的物3aを高収率で得ることに成功しました(図4)。反応は立体選択的に進行し、2つの連続する不斉点を構築することができました。NHC触媒非存在下では反応は進行しないとのことで、Chiらが想定したようにNHC触媒のケトンへの付加反応が足がかりとなりC–C結合の開裂が起きていると考えられます。

 

図4 NHC触媒による反応の最適化の結果

図4 NHC触媒による反応の最適化の結果

基質適用範囲

著者らはシクロブテノン1やイミン2の各位置にアリール基やアルキル基など様々な置換基を導入して、基質適用範囲を綿密に調査しています。一部だけ紹介します(図5)。触媒前駆体Dを用いた場合、3aは高収率かつ高いエナンチオ選択性で得られるのに対して、イミンの置換基をメチル基から電子求引性のCl基を導入するとエナンチオ選択性が急激に低下します。一方、より電子求引性を有する触媒前駆体Eは、3aより3oに対して高いエナンチオ選択性を示しました。この結果から、エナンチオ選択性の制御にはイミンとNHC触媒前駆体の電子的性質が大きく関与することが予想されます。

図5 基質適用範囲

図5 基質適用範囲

 

以上、NHC触媒を用いたC–C 結合活性化反応の論文を紹介しました。基質と触媒が可逆的に相互作用して反応が進行する有機分子触媒の特徴を生かした反応開発だと思いました。C–C結合活性化においてはもっぱら遷移金属触媒が用いられてきましたが、有機分子触媒もC–C結合を活性化できることが見出されました。この論文を皮切りにさらなる方法論が開発されることに期待したいと思います。

 

参考文献

  1. (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485. DOI: 10.1002/anie.201108446. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. DOI: 10.1021/ja309978c. (c) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. DOI: 10.1002/anie.201311009.

 

 

関連書籍

[amazonjs asin=”3527334904″ locale=”JP” title=”N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis”][amazonjs asin=”904812865X” locale=”JP” title=”N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis (Catalysis by Metal Complexes)”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

関連リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. Biotage Selekt のバリュープライス版 Enkel …
  2. 第二回ケムステVプレミアレクチャー「重水素標識法の進歩と未来」を…
  3. 公募開始!2020 CAS Future Leaders プログ…
  4. プロワイプ:実験室を安価できれいに!
  5. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  6. 炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する
  7. 「科学者の科学離れ」ってなんだろう?
  8. むずかしいことば?

注目情報

ピックアップ記事

  1. DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―
  2. ジアゾメタン原料
  3. (−)-Salinosporamide Aの全合成
  4. 人羅勇気 Yuki HITORA
  5. ジョン・アンソニー・ポープル Sir John Anthony Pople
  6. 粘土に挟まれた有機化合物は…?
  7. ニコラス反応 Nicholas Reaction
  8. 5社とも増収 経常利益は過去最高
  9. 膨潤が引き起こす架橋高分子のメカノクロミズム
  10. メリフィールド氏死去 ノーベル化学賞受賞者

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー