[スポンサーリンク]

化学者のつぶやき

光有機触媒で開環メタセシス重合

[スポンサーリンク]

みなさんは開環メタセシス重合(ROMP : Ring-opening metathesis polymerization)をご存知でしょうか?

その名の通り、2005年のノーベル賞受賞反応である“開環メタセシス反応”を使って“ポリマーを作る(重合)”反応のことを言います。ROMPは30年以上も前から研究されており、その多くは比較的狭い分子量分布のポリマーを合成することが可能で、官能基許容性にも優れています(図1)。そのため様々な機能をもつポリマー、例えばポリノルボルネンやポリオクテニレンが合成・製品化されるなど、ROMPはポリマー合成における定番ツールの1つとなっています。

 

図1.金属触媒を用いた開環メタセシス重合(従来法) (出典:論文より改変)

図1.金属触媒を用いた開環メタセシス重合(従来法)(出典:論文より改変)

 

ROMPが汎用性の高い優れたポリマー合成法に成長したきっかけは、ルテニウムやモリブデンなどの金属を含む高活性なメタセシス触媒の登場にあったと言っても過言ではありません。

しかし、実はこれは諸刃の剣であり、合成したポリマーに残った金属触媒はポリマーの物理的性質に影響を与えるだけでなく、時には生体に対して毒となります。そのため、ポリマーを合成した後に何工程もかけて金属を取り除く必要がありました。この問題に解を与えるべく、ワシントン大学のBoydstonらは金属触媒を用いない開環メタセシス重合反応を初めて報告しました。開発のキーワードは“ラジカルカチオンの発生”“光レドックス触媒”です。

 

“Metal-Free Ring-Opening Metathesis Polymerization”

Ogawa, K. A.; Goetz, A. E.; Boydston, A. J.

J. Am. Chem. Soc. 2015, 137, 1400. DOI: 10.1021/ja512073m

 

開発のキーワードその1:ラジカルカチオンの発生

開発のヒントとなったのが、2006年に東京農工大学の千葉一裕教授らのグループによって報告された電気化学的手法によるアルケンのクロスメタセシス反応でした[1](図2)。

この反応ではまず、陽極で1電子酸化されたビニルエーテルがラジカルカチオンを生じ、これと末端アルケンとが4員環のラジカルカチオン中間体を生成します。ここで生じたラジカルカチオン中間体がフラグメント化すると、目的とするクロスメタセシス反応の生成物を得ることができます。しかしながら、フラグメント化する前に1電子還元されるとシクロブタン環が生成し目的物は得られません。

 

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応 (論文より改変)

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応(出典:論文より改変)

 

Boydstonらは

「もし、副生し得るシクロブタン環に非常に高い歪エネルギーがかかっていたら、目的とするクロスメタセシス反応のみが進行するのではないか」

と予想しました。そもそもシクロブタン環はおよそ109°の結合角をもつsp3炭素を90°に“無理矢理”曲げているわけですから、シクロブタン環には高い歪エネルギーがかかっています。これを更に歪ませれば結合を形成する(保つ)ことができないので副反応を抑えることができるはずです。

また、4員環のラジカルカチオン中間体からフラグメント化して生じる2つのアルケンを鎖で繋いでおけば(つまり環状オレフィンを用いれば)、その1端はアルケン、もう1端は新たなラジカルカチオンとなります。生じたラジカルカチオンは別のアルケンと再度反応することができるため、これを連続的に繰り返すことで“金属触媒を使わないROMP”が実現できます(図3)。

 

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略 (出典;論文より改変)

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略(出典;論文より改変)

 

開発のキーワードその2:光レドックス触媒の利用

では、Boydstonらはどうやってビニルエーテルにラジカルカチオンを発生させたのでしょう?その答えは光レドックス触媒の利用でした。著者らはビニルエーテルを一電子酸化しラジカルカチオンを発生させるのに適切な酸化電位をもつピリリウム塩に注目しました。

有機合成化学において、光照射によって励起されたピリリウム塩は一電子酸化剤として働き様々な反応を進行させることが既に知られています(図4)。また、光レドックス触媒は光照射のオン・オフでラジカルの生成を制御できるといった特徴をもち、重合反応に適用することで重合度の制御が容易に行える、といったメリットが有ります。

 

図4.光励起されたピリリウム塩 (出典:論文より改変)

図4.光励起されたピリリウム塩(出典:論文より改変)[2]

Boydstonらの考えは見事に当たり、ノルボルネンのジクロロメタン溶液に0.03%のピリリウム–テトラフルオロボレート塩を添加し青色LEDを照射したところ、重合反応が進行しPNBが生成することを確認しました(図5)。モノマー(ノルボルネン)とピリリウム塩との比率を変えることで分子量の制御(最大57.4 kDa)も可能で、分散度は1.3-1.7程度と金属触媒(第1世代Grubbs触媒)を用いたROMPに匹敵する良い値を示しました。

 

図5.ピリリウム塩を用いた開環メタセシス重合反応 (出典:論文より改変)

図5.ピリリウム塩を用いた開環メタセシス重合反応(出典:論文より改変)

 

先に述べたとおり、光レドックス触媒を用いる利点は重合反応の進行を光照射のオン・オフで制御できることにあります。この反応も例外ではなく、光照射下では重合反応は進行し、光照射を止めると反応は進行しません。その後再び光を照射すると重合が進行しますので、光の照射時間で重合度を制御することも可能です。詳しくは原著論文を見てみて下さい。

惜しむらくは、現段階で適用可能な基質がノルボルネンに限られるところでしょうか。また、今回の手法で合成されたポリマーはシス体とトランス体とが1:2で混ざっています。このような立体異性体の混合比はポリマーの性質に大きく影響しますので、それらを選択的に作り分けることができればさらに明るい未来が広がるでしょう(現在、金属メタセシス触媒を用いると可能です)。

いずれにしても、本研究はROMPに新しい戦略をもたらした画期的なものであると言えます。これを機に、より汎用性の高い手法がでてくることに期待です。

 

参考文献

  1. Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Angew. Chem., Int. Ed. 2006, 45, 1461. DOI:10.1002/anie.200503656
  2.  Miranda, M. A.; García, H. Chem. Rev. 1994, 94, 1063. DOI:10.1021/cr00028a009

 

関連書籍

[amazonjs asin=”3527334246″ locale=”JP” title=”Handbook of Metathesis, 3 Volume Set”][amazonjs asin=”1243760354″ locale=”JP” title=”Ring Opening Metathesis Polymerization of 1-Substituted Cyclobutene Derivatives and Its Application to Antimicrobials: From Homopolymers to Alternatin”]

 

外部リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  2. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  3. 私が思う化学史上最大の成果-1
  4. 人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには
  5. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん
  6. 実験の再現性でお困りではありませんか?
  7. 研究者のためのマテリアルズインフォティクス入門コンテンツ3選【無…
  8. ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感…

注目情報

ピックアップ記事

  1. varietyの使い方
  2. 構造式を美しく書くために【準備編】
  3. クロロ(1,5-シクロオクタジエン)イリジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)iridium(I) Dimer
  4. 水素化ホウ素亜鉛 Zinc Bodohydride
  5. 薄くて巻ける有機ELディスプレー・京大など開発
  6. ケムステ国際版・中国語版始動!
  7. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開!
  8. 化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~ 45 mミリ波電波望遠鏡(筆者撮影)
  9. 電子実験ノートもクラウドの時代? Accelrys Notebook
  10. 「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年2月
 1
2345678
9101112131415
16171819202122
232425262728  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー