[スポンサーリンク]

化学者のつぶやき

“アルデヒドを移し替える”新しいオレフィン合成法

[スポンサーリンク]

 

有機合成化学において、オレフィン同士をつなげる反応は「オレフィンカップリング反応」です。また、オレフィンを組み替える反応は「オレフィンメタセシス」です。そして、オレフィンをつくる反応は「オレフィン合成」となりますが、これらの3つのオレフィンに関する反応の開発の先駆者にはすべてノーベル化学賞が授けられています

例えば、オレフィンカップリング(Mizoroki–Heck反応)のHeckオレフィンメタセシスGrubbs、そして、オレフィン合成ではWittig反応のWittigです。

2015-01-30_16-27-11

 

また、先日紹介したBaranらによる鉄触媒を使った還元的カップリング反応は「オレフィンカップリング」、HoveydaらによるZ選択的な「オレフィンメタセシス」もこれらに分類されることはお分かりになると思います。つまり、精力的に研究が行われてきた分野であることは疑いなく、これらのノーベル賞を”超える”反応開発は、有機合成化学者にとって目指すべき一つの大きな指標だと言えます。

さて、すこし前置きが長くなりましたが、今回「オレフィン合成」の分野で画期的な手法がScience誌に報告されましたので紹介したいと思います。

“Rh-catalyzed C–C bond cleavage by transfer ”

Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Science 2015347, 56.

DOI:10.1126/science.1261232

 

このオレフィン合成は原料のアルデヒド”移し替える”ことが鍵となっています。それでは背景から今回の論文の内容を覗いてみましょう。

アルデヒドを“移しかえる”

従来のオレフィン合成法といえば、E2脱離反応や、前述したアルデヒドとリンイリドをカップリングさせるWittig反応などがよく知られています(図1上)。

一方で、生体内では酵素の働きにより官能基を脱離させることによってオレフィンを生成する合成法が存在します。生体内の重要な代謝酵素、シトクロムP450はアルデヒドを脱離する(脱ヒドロホルミル化)ことでオレフィンをつくっています(図1下)。

「この変換反応を人工触媒の力でできないか?」

と考え、実現したのが、今回の論文の代表著者である米国カリフォルニア大アーヴァイン校のVy Dong教授です。

 

Fig1

図1 典型的なオレフィン合成と生体内のオレフィン合成

 

それでは実際にどのような反応を設計したのでしょうか。Dong教授が着目した化学種はRh–アシル種1です。このRh錯体1は、アルデヒドのカルボニルC–H結合がRh(I)に酸化的付加することで生成することが知られています[1]。この化学種は、オレフィンと反応してヒドロアシル化を起こすこと(path A)[2]、またカルボニルが金属中心に転位して脱カルボニル反応を起こすこと(path B)[3]がこれまでに見出されていました。

今回h、Dong教授は反応条件を綿密に調整し、既存のこれらの反応を抑制して、脱ヒドロホルミル化反応の開発を目指しました (図2)。

 

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

 

発想は至ってシンプルです。”アルデヒドを移しかえる”ことができればよいのです (図3)。すなわち、別のオレフィンを「ホルミル基アクセプター」として用いて、出発原料のアルデヒドのCO()と水素(ピンク )をそっくりそのまま移す、というものです。しかし、ここで勘のいい方ならお気づきかもしれませんが、移しかえた先にできるものもアルデヒドです。つまり、移しかえた先からまたCOと水素が戻り、平衡反応になってしまうという問題点があり、ホルミル基アクセプターになんらかの工夫が必要となります。

Fig4

図3 “アルデヒドを移し替える”

 

ヒドロホルミルアクセプター、ノルボルナジエン

そこで、選んだ「アクセプター」は、ノルボルナジエン。ノルボルナジエンは歪んだオレフィンであるため、逆反応は不利であるという性質を使いました。その結果、ほぼ定量的に目的のオレフィンを得ることに成功しています。反応後の粗生成物にはノルボルナジエンのヒドロホルミル化体が観測されており、Dong教授らのデザインした反応がしっかり実現したことを意味しています。特筆すべきことに、このノルボルナジエンをベンゾノルボルネンへと変更することで、反応温度を室温まで下げることができます。

図4 Dongらが開発したRh触媒を用いた反応条件

図4 Dongらが開発したRh触媒を用いた反応条件

 

かなり専門的な話になりますが、反応機構を紹介します。図5の Rh種Aから触媒サイクルはスタートし、アルデヒドC–H結合の酸化的付加(AB)、カルボン酸の還元的脱離(BC)、続くカルボニルの転位、β水素脱離(CD)を経てオレフィン錯体を生成します。次が肝心のオレフィン交換ステップであり(DD’)、ここで目的物の脱ヒドロホルミル体が得られます。ここから先は触媒サイクルの初めに戻る反応になりますが、よく見てみると、すべてAからDまでの経路の逆反応なのです。ただ違うのはRh上に結合しているのが原料のアルデヒド由来の化合物か、ノルボルナジエン由来の化合物か、だけです。ノルボルナジエンを用いることで、D’からC’のステップを不可逆反応にできたことが本反応のミソです。また、ここでは詳細は述べませんが、用いているRh錯体Aに配位しているカルボキシラートの役割も非常に重要で、芳香族カルボン酸でないとうまく反応は進行しません。詳しくは論文を読んでいただけたらと思います。

図5 想定されている反応機構

図5 想定されている反応機構

 

合成的有用性

この反応を用いて複雑な化合物のオレフィン化にも成功しています。一部、E/Zの選択性、生成するオレフィンの位置選択性に課題は見られるものの、比較的穏和な条件で多くのアルデヒドがオレフィンへと変換可能なことが実証されています。高度に官能基化されているマクロライド化合物のオレフィンへの変換反応は目を見張るものがあります。また、従来法では11工程かけて合成されていたyohimbenoneを比較的安価に入手出来るyohimbineからわずか3工程で合成を達成するなど[3]、合成化学的にも新たなツールとして利用できそうに思えます。

反応の適用範囲と(+)-yohimbenoneの合成

反応の適用範囲と(+)-yohimbenoneの合成

 

以上、アルデヒドを脱離基として用いた新規オレフィン合成法の論文を紹介しました。達成されている現象論もさることながら、その合成的有用性の売り方は見事、の一言に尽きると思います。

オレフィン合成法としてはもちろん、一炭素減炭反応としても捉えられますし、合成的なニーズはありそうだと感じますがいかがでしょうか。

 

参考文献

[1] Garralda, M. A. Dalton Trans. 2009, 2009, 3635. DOI:10.1039/B817263C

[2] Wills, M. C. Chem. Rev. 2010110, 725. DOI:10.1021/cr900096x

[3] Tsuji, J.; Ohno, K. Tetrahedron Lett. 19656, 3969. DOI:10.1016/S0040-4039(01)89127-9

 

 

関連書籍

[amazonjs asin=”0080966306″ locale=”JP” title=”Organic Syntheses Based on Name Reactions, Third Edition: a practical guide to 750 transformations”][amazonjs asin=”1244489476″ locale=”JP” title=”Articles on Rhodium, Including: Rhodite, Rhodplumsite, Bowieite, Wilkinson’s Catalyst, Organorhodium Chemistry, Rhodocene, Rhodium(iii) Chloride, Rhod”]

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 遷移金属触媒がいらないC–Nクロスカップリング反応
  2. 研究費総額100万円!2050年のミライをつくる若手研究者を募集…
  3. L-RAD:未活用の研究アイデアの有効利用に
  4. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金…
  5. ケムステイブニングミキサー2016へ参加しよう!
  6. アメリカ化学留学 ”大まかな流れ 編”
  7. 機械的刺激による結晶間相転移に基づく発光性メカノクロミズム
  8. 高収率・高選択性―信頼性の限界はどこにある?

注目情報

ピックアップ記事

  1. イオンペアによるラジカルアニオン種の認識と立体制御法
  2. 伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール
  3. 環境、人体に優しい高分子合成を開発 静大と製薬会社が開発
  4. マンチニールの不思議な話 ~ウィリアム・ダンピアの記録から~
  5. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成
  6. 窒化ガリウムの低コスト結晶製造装置を開発
  7. 3日やったらやめられない:独自配位子開発と応用
  8. アイルランドに行ってきた①
  9. 高井・内本オレフィン合成 Takai-Utimoto Olefination
  10. 一流の化学雑誌をいかにしてつくるか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年2月
 1
2345678
9101112131415
16171819202122
232425262728  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP