[スポンサーリンク]

化学者のつぶやき

触媒的syn-ジクロロ化反応への挑戦

[スポンサーリンク]

アルケンは求電子剤に対して様々な付加反応を起こします。代表的な例としてノーベル賞反応であるブラウンヒドロホウ素化反応や、シャープレス不斉ジヒドロキシル化反応が挙げられます。このようにアルケンは分子に官能基を導入する際の重要な「足がかり」となります。それらに並んで、古くから知られるアルケンの付加反応としてジハロゲン化反応があります。塩素や臭素などのハロゲン分子を求電子剤としてアルケンをジハロゲン化できます。

この度Nature Chemistry誌に、アルケンのジクロロ化の論文が報告されました。

“Catalytic, stereospecific syn-dichlorination of alkenes”

Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Nature Chem.2015, 7, 146-152. DOI:10.1038/nchem.2141

なにをいまさら?と思う方かもしれませんが、列記とした新反応です。ポイントは論文のタイトルにあるように、アルケンのジクロロ化が「触媒」で進み、かつ「syn-付加で進行する」点です。それでは研究の背景から紹介していきたいと思います。

アルケンのジクロロ化反応

アルケンのジクロロ化は、有機化学の教科書に必ず記載されている初歩的な反応です。特徴として、アルケンに対するハロゲンの付加がantiで進行するという立体特異性を有します。この理由はわかりますよね。アルケンの分極した塩素分子への攻撃、続く生成したカルボカチオンの補足により、図1に示したような橋かけクロロニウムイオン(またはクロリラニウムイオン)が生成します。橋かけクロロニウムイオンにクロロアニオンの求核攻撃がSN2反応で進行するため、ハロゲンがantiで付加した生成物が立体特異的に得られます。

図1-rev2

図1 アルケンのanti-ジクロロ化の反応機構

 

 

塩素化剤としては、古くは塩素ガスが用いられてきましたが、現在では取り扱いが容易なanti-ジクロロ化剤が数多く開発されています[1]。それらanti-ジクロロ化剤は、danicalipin Aやmytilipin Aのような高度にクロロ化されたchlorosulfolipid類の全合成にも適用されています(図2)。このように、アルケンの効率的なジクロロ化反応の開発はこれら天然物を合成する上でも必要不可欠です。

 

図2

図2 アルケンのジクロロ化反応によって合成されたchlorosulpholipid類

 

一方で、syn選択的なジハロゲン化反応は過去に数例しか報告されていません。1970年代に五塩化アンチモンや五塩化モリブデンを用いることでアルケンのsyn-ジクロロ化が報告されています[2]。しかし、これらは強力なルイス酸であるため、官能基をもたないアルケンにしか適用できません。また1980年代、求電子剤としてフェニルセレネニルトリクロリド(PhSeCl3)、クロロ源としてテトラブチルアンモニウムクロリド(Bu4NCl)を用いたアルケンのsyn-選択的ジクロロ化が開発されました(図3)[3]。しかし、依然として適用できるアルケンは官能基をもたないアルケンに限られ、また一般的に毒性が高いことで知られる有機セレン化合物を化学量論量以上用いなければならず、実用性の面で課題が残されていました。

 

図3

図3 PhSeCl3を用いたアルケンのsynジクロロ化

 

そこで米国イリノイ大学のScott E. Denmark教授らは、アルケンのsyn-ジクロロ化反応の実用性の向上を目的として、有機セレン化合物を触媒量に低減できないかと考えました。

触媒的syn-ジクロロ化反応への挑戦

前述したフェニルセレネニルトリクロリドによるアルケンのsyn-ジクロロ化の反応機構を見てみましょう(図4)。まず、フェニルセレネニルトリクロリド(A)に対してアルケンが付加することでセレニウムイオン(セレニラニウムイオン)中間体(B)を形成します。続いてクロロアニオンの求核攻撃によって、クロロ基とセレニル基がanti付加した中間体(C)を生じます。その後セレニル基の脱離を伴った、クロロアニオンの求核置換反応が進行し、ジクロロアルカンのsyn-付加体が得られます。一連の反応後、セレン4価種であるAはセレン2価種であるフェニルセレネニルクロリド(D)へと還元されているのが見て分かると思います。

図4-rev

図4 PhSeCl3を用いたアルケンのsyn-ジクロロ化の反応機構

 

従って系内に酸化剤を添加することでDを酸化し、再びAを再生することが出来れば、触媒量のAでアルケンのsyn付加反応が実現します(図4中の枠内)。

しかしどんな酸化剤でも良いわけではありません。反応系中にはアルケンをはじめとして、酸化剤と反応しやすい分子が多く含まれており、これらと酸化剤が反応すれば触媒反応として進行しません。従ってDのみに選択的な酸化剤を見つけ出すという、針に糸を通すような条件を見出さねばなりません。

ここで、Denmark教授らは2013年にBrederらによって報告されている、触媒量のPhSeSePh(ジフェニルジセレニド)と、酸化剤としてN-フルオロベンゼンスルホンイミド(NFSI)を用いたアルケンのアリル位及びビニル位アミノ化反応[4]に注目しました。本反応ではPhSeSePh触媒の酸化剤として求電子的フッ素化剤、すなわちフルオロカチオンを用いており、NFSIが出発物質であるアルケンや、中間体であるアルキルセレニウム種を侵すことなく、触媒のみを酸化しています。

検討の結果、酸化剤に同じく求電子的フッ素化剤であるN-フルオロピリジニウムテトラフルオロホウ酸塩([PyF+][BF4])を用いることで、触媒反応を見事進行させることに成功し、目的のsyn-ジクロロ体を高収率で与えました(図5)。またトリメチルクロロシラン(Me3SiCl)の添加が、本反応を効率よく進行させる上で必須であると述べています。

 

図6

図5 アルケンの触媒的syn-ジクロロ化の条件検討

 

その理由としてDenmark教授らは、トリクロロメチルシランが[PyF+][BF4]のセレン触媒の酸化によって生じるフルオロアニオンを補足することで、セレン触媒の失活を防いでいるためであると述べています(図6)。またクロロアニオンによる求核置換反応と競合すると考えられるE2脱離反応がかなり抑えられているのも驚きの結果と言えます。

 

図6

図6 トリメチルクロロシランの作用機構

 

また本手法は、アルケンの基質適用範囲が大幅に拡大しています(図7)。分子内にエステル、アミドを持つアルケンに対してもsyn-ジクロロ化は問題なく進行し、さらにヒドロキシ基を有していても本反応を妨げません。不飽和エステルのような電子不足なアルケンが共存する場合は、より電子豊富なアルケンがジクロロ化されるようです。これ以外にも様々なアルケンが適用可能ですので、詳しくは論文を見て頂けたらと思います。

図7

図7 アルケンの基質適用範囲

 

以上、今回はアルケンの触媒的syn-ジクロロ化反応について紹介しました。反応自体は大変シンプルですが、有機セレン化合物を触媒量に低減した点、様々なアルケンを用いることが可能になった点で、有機合成化学的に価値ある反応に仕上がっています。また、触媒を開発する過程での着眼点や考察は、圧巻の一言です。

今後は、未だ達成されていないエナンチオ選択的なアルケンのジクロロ化へと展開を期待したいと思います。

参考文献

  1.  (a) Markó, I. E.; Richardson, P. R.; Bailey, M.; Maguire, A. R.; Coughlan, N. Tetrahedron Lett. 1997, 38, 2339-2342. DOI:10.1016/S0040-4039(97)00309-2(b) Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem. Int. Ed. Engl. 1997, 36, 2342-2344. DOI:10.1002/anie.199723421 (c) Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Org. Biomol. Chem. 2013, 11, 1598-1601. DOI:10.1039/C3OB27345H (d) Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312-4315. DOI:10.1039/C3OB40670A
  2.  (a) Uemura, S.; Onoe, A.; Okano, M. Bull. Chem. Soc. Jpn. 1974. 47, 692-697. DOI:10.1246/bcsj.47.692 (b) Uemura, S.; Onoe, A.; Okano, M. Bull. Chem. Soc. Jpn. 1974. 47, 3121-3124. DOI:10.1246/bcsj.47.3121
  3. Morella, A. M.; Ward, D. A. Tetrahedron Lett. 1984, 25, 1197-1200. DOI: 10.1016/S0040-4039(01)91559-X
  4. Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew. Chem. Int. Ed. 2013, 52, 8952–8956. DOI: 10.1002/anie.201303662

外部リンク

 

関連書籍

[amazonjs asin=”3642120725″ locale=”JP” title=”C-X Bond Formation (Topics in Organometallic Chemistry)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 投票!2016年ノーベル化学賞は誰の手に??
  2. “へぇー、こんなシンプルにできるんだっ!?”四級アンモニウム塩を…
  3. とある水銀化合物のはなし チメロサールとは
  4. N-オキシドの性質と創薬における活用
  5. 【書籍】『これから論文を書く若者のために』
  6. 結晶学分野に女性研究者が多いのは何故か?
  7. 尿から薬?! ~意外な由来の医薬品~ あとがき
  8. 第30回ケムステVシンポ「世界に羽ばたく日本の化学研究」ーAld…

注目情報

ピックアップ記事

  1. オンライン授業を受ける/するってどんな感じ? 【アメリカで Ph. D. を取る: コロナ対応の巻】
  2. 女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!
  3. ドナルド・トマリア Donald Tomalia
  4. 有機合成化学協会誌2023年5月号:特集号「日本の誇るハロゲン資源: ハロゲンの反応と機能」
  5. 生物学的等価体 Bioisostere
  6. タルセバ、すい臓がんではリスクが利点を上回る可能性 =FDA
  7. 極小の「分子ペンチ」開発
  8. 再生医療関連技術ーChemical Times特集より
  9. スーパーブレンステッド酸
  10. 子育て中の40代女性が「求人なし」でも、専門性を生かして転職を実現した秘訣とは

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年2月
 1
2345678
9101112131415
16171819202122
232425262728  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー