[スポンサーリンク]

化学者のつぶやき

複雑天然物Communesinの新規類縁体、遺伝子破壊実験により明らかに!

[スポンサーリンク]

インドールアルカロイドの一種であるCommunesinは、7つの環、2つのaminal様構造、5または6つの不斉点をもつ、非常に複雑な骨格を有しています。当然のごとく、多くの合成化学者を引きつけており、これまでにQin[1] Ma[2], Weinreb[3], Funk[4], Stoltz[5]らによる全合成が報告されています。

 

全合成が達成されてはいた一方で、その生合成は謎のままでした。今回、Communesinの生合成経路がUCLAのYi Tangのグループにより報告されました。

“Elucidation of the Concise Biosynthetic Pathway of the Communesin Indole Alkaloids.”

Lin, H.-C.; Chiou, G.; Chooi, Y.-H.; McMahon, T. C.; Xu, W.; Garg, N. K. and Tang, Y. Angew. Chem. Int. Ed..2015, Early View.

DOI: 10.1002/anie.201411297

今回の報告でYi Tangらは、「生合成遺伝子を突き止めて終わり」ではなく、Communesinの新規類縁体をも得る事にも成功しています。学部の授業では習わない、遺伝子工学を絡めた生合成遺伝子の突き止め方について今回は簡単に触れたいと思います!

 

 

古典的な手法

遺伝子工学が未発達であった頃は、単離された代謝産物から反応経路を推定したりしていました。また、古くから天然物の生合成研究に使われて来た手法として放射線標識した前駆体化合物を投与するFeeding Experimentというものがあります。放射線標識した予想される前駆体化合物を培地中に添加し、最終生成物に放射線標識した元素が取り込まれている場合、予想が正しかったことが証明され、前駆体に関する情報が得られていました。また、酵素を単離し、アミノ酸配列を解析する事により、生合成遺伝子を突き止めたりしていました。以前は、化合物→酵素→遺伝子という順に明らかになっていました。

Communesinの生合成に関してはFeeding Experimentからtriptophan由来のふたつのindole前駆体から生成するという知見が得られていました。

 

近年の主流:遺伝子主体

次世代シークエンサーの登場により、ゲノムの全塩基配列の解析が驚くほど早くなりました。遺伝子工学の発達とも相まって、近年では、ある特定の微生物のゲノムの全塩基配列が公開された瞬間に、それらの代謝産物の生合成遺伝子が推定され、生合成研究の競争の幕が切って落とされます。まさにスピード勝負です!!

現代では、遺伝子から出発し、その後酵素、さらには新規類縁体が明らかになるという事も珍しくありません。

 

生合成遺伝子の予測

「検索する」と言っても、「どうやって?」と思うかとも多いかと思います。まずは、生合成経路を“逆合成解析”する事が必要です。そして、どのような酵素が入っているかを予想して検索します。「似た機能をもつ酵素は、相同性の高い配列を持っている」という考えに基づいて検索を行っていきます。

 

Communesinの場合では、tryptophanが前駆体と分かっているので、これを基質として受け入れる酵素を検索。いくつか見つかった遺伝子クラスターの中でacyl transferase、methyl transferase、PKS、種々の酸化酵素等が入っているものを調べたのではないでしょうか?

 

 Communesin遺伝子クラスター

実験の結果、Communesinの生合成には16の遺伝子(酵素)が関わっている事が分かりました。

Communesin gene

目的とする遺伝子クラスターが分かったら、次に行うのは遺伝子破壊実験です。ひとつひとつの遺伝子をノックアウトし、どの中間体で生合成経路が止まるかということにより、どの部分の反応に関与しているかが明らかとなってきます。

今回の論文では、下の図のような生合成経路が明らかとなりました。

Communesin scheme

 

今回の研究により新しく単離されたのは、Communesin I, J, Kの3化合物です。

エポキシ化酵素(CnsJ)を破壊すると、エポキシ化されない化合物Cpmmunesin F、J、Kが得られました。このうちCommunesin J、Kは新規化合物です。また、アシル化酵素(CnsK)を破壊するとCommunesin Iが最終代謝産物として得られました。

筆者らは、このエポキシ化酵素(CnsJ)の反応はかなり速く、Communesin Kは生成すると同時にすぐに次の化合物へと代謝されてしまうと考えています。しかし、現代の遺伝子工学の力を借りる事により、新規類縁体Communesin Kを得る事が可能となったのです。

同様に、アシル化酵素(CnsK)を破壊する事により最終代謝物Communesin A or Bのひとつ手前のCommunesin Iを得る事が出来ました。

 

「こんな人為的に遺伝子操作したカビが生産したものって天然物なの?」と思う人もいるかもしれません。しかし、そもそも天然物の類縁体は、生合成経路に含まれるいくつかの酵素が作用しなかったものだと思われます。自然界では、代謝が速すぎて単離抽出できないもの、微量すぎて単離で着ないものを遺伝子工学の助けにより単離する事が可能になったと考える方が良いと思います。

 

「生合成研究って何の役にたつの?」と思う方もいるかもしれませんが、このように多様な新規類縁体を発見する事も出来るのです。さらには、遺伝子配列から代謝産物をある程度予測する事だって可能です。

今回Communesinの生合成経路が明らかとなりましたが、個々の酵素の詳しいメカニズムについては、まだ完全には分かっていません。個人的には複雑なCommunesinの骨格構築の鍵となっている酸化酵素CnsCの反応機構が気になっております。こちらに関しては、今後の研究に注目です!

 

 関連文献

  1.  H. Wu, F. Xue, X. Xiao, Y. Qin, J. Am. Chem. Soc. 2010, 132, 14052 – 14054  DOI: 10.1021/ja1070043; J. Yang, H. Wu, L. Shen, Y. Qin, J. Am. Chem. Soc. 2007, 129, 13794 – 13795. DOI: 10.1021/ja075705g
  2. Z. Zuo, W. Xie, D. Ma, J. Am. Chem. Soc. 2010, 132, 13226 – 13228 DOI: 10.1021/ja106739g;  Z. Zuo, D. Ma, Angew. Chem. Int. Ed. 2011, 50, 12008 – 12011. DOI: 10.1002/anie.201106205;
  3. P. Liu, J. H. Seo, S. M. Weinreb, Angew. Chem. Int. Ed. 2010, 49, 2000–2003;  J. H. Seo, P. Liu, S. M. Weinreb, J. Org. Chem. 2010, 75, 2667 – 2680.
  4. J. Belmar, R. L. Funk, J. Am. Chem. Soc. 2012, 134, 16941 – 16943 ;  S. L. Crawley, R. L. Funk, Org. Lett. 2003, 5, 3169 – 3171.
  5.  S.-J. Han, F. Vogt, J. A. May, S. Krishnan, M. Gatti, S. C. Virgil, B. M. Stoltz, J. Org. Chem. 2014, 80, 528 – 547;  S.-J. Han, F. Vogt, S. Krishnan, J. A. May, M. Gatti, S. C. Virgil, B. M. Stoltz, Org. Lett. 2014, 16, 3316 – 3319;  J. A. May, R. K. Zeidan, B. M. Stoltz, Tetrahedron Lett. 2003, 44, 1203 – 1205.

 

関連書籍

[amazonjs asin=”4254177151″ locale=”JP” title=”代謝と生合成30講 (図説生物学30講 植物編)”]
Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 実験と機械学習の融合!ホウ素触媒反応の新展開と新理解
  2. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  3. ビニグロールの全合成
  4. アマゾン・アレクサは化学者になれるか
  5. 第7回日本化学会東海支部若手研究者フォーラム
  6. 5分でできる!Excelでグラフを綺麗に書くコツ
  7. 化学研究ライフハック:情報収集の機会損失を減らす「Read It…
  8. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…

注目情報

ピックアップ記事

  1. コーリー・フックス アルキン合成 Corey-Fuchs Alkyne Synthesis
  2. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成
  3. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」
  4. SciFinder Future Leaders in Chemistry参加のススメ
  5. ワートン反応 Wharton Reaction
  6. ノーベル化学賞明日発表
  7. N-オキシドの合成 Synthesis of N-oxide
  8. 香料化学 – におい分子が作るかおりの世界
  9. リーベン ハロホルム反応 Lieben Haloform Reaction
  10. マイクロ空間内に均一な原子層を形成させる新技術

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年1月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー