[スポンサーリンク]

一般的な話題

有機化合物で情報を記録する未来は来るか

[スポンサーリンク]

 

突然ですが皆さんのパソコン歴はどれ位ですか?

正確に思い出せないにしても、最初にどんな記憶装置を使っていたかで大体見当はつきます。

現在では記憶装置ではSSDとか、USBメモリが一般的ですね。少し前ならHDDと3.5インチのフロッピーディスクでしょうか。えっ?フロッピーは5インチでしたか?

他にもMOとかZIPとかJAZZとかもありましたね。まさかとは思いますがカセットテープじゃないでしょうね?

時代によって入手可能な記憶デバイスの容量、取り扱う情報の容量は異なりますが、一つだけ確かな事はその容量は増える一方であるということです。増大する情報量に対して、記憶メディアの進歩は追いつけるのでしょうか?そして化学はどんな答えを見つける必要があるのでしょうか?

記事をお読みの皆様はPCの画面、もしくはスマホの画面をご覧だと思います。PCの記憶デバイスの容量は数100GBから数TB、スマホなら数10GBという単位の記憶容量だと思います。ひと昔前なら信じられないような容量ですが、結構一杯になりますよね。

もう見ることも無くなってきた3.5インチフロッピーディスクの容量はなんと1.4 MBでしたか。音楽ファイル一曲分にもなりません。筆者が最初に買ったのはカセットテープというものにデータを録音して記憶するというものでした。カセットテープの時代はせいぜい必要なデータ容量は数10kB、インターネットの接続回線も初めて引いたのは56kbpsでした。ちなみにケムステの記事1ページの容量は約1.5 MBですので、常時最大速度が出たとしても読み込むのに3分30秒程度はかかる計算です。
polymer_1.jpg

いずれにしてもこれら情報を記憶しておくために用いられているのは無機化合物です。磁気的、もしくは電気的な信号の出し入れによって情報を読み書きしています。しかし無機化合物による情報の記録には難点が幾つかあります。

例えば、磁気的、電気的記録は寿命が短いということや、ディスクやメモリのように化合物をある適切な形状に加工しなければならず、決して小さくない容積を占めることなどです。

寿命が最も長い記録方法は石板だと言われています。古代の情報が現代までしっかり伝わっています。これに習い、後世に残したい情報をガラスに残そうとする試みもあるようです。

容積については記録メディアの集積化によってどんどんダウンサイジングされています。ひと昔前のUSBメモリは数10MBとかでしたが、今は数GBの物が千円以下で買えたりします。ハードディスクドライブも4TBのものが購入可能です。しかし、現代の技術でも1ZB (1015 MB)の情報を記憶するためのHDDの製造には約1000 Kgのコバルト合金が必要です。ちなみに1ZBというのは1日に世界で生み出される情報量とされています。

 

以上のような問題点を解決すべく日夜研究開発が続けられていると思いますが、ふと見ると桁違いに効率の良い情報記録物質があることに気づきます。あなたもたくさん持っている物質です。そう、DNARNAです。これらのバイオポリマーは生命の情報記録に用いられていると考えることができます。DNAであれば理論上数グラムで1ZBの情報を記憶可能です。そう考えると有機化合物、有機高分子化合物は情報の記録メディアとして有望に思えます。

 

実際このようなコンセプトの基、高分子化合物に情報を記憶する試みに関する論文も報告されており[1, 2, 3]、これからますますホットなトピックスになりそうです。

DNAのような分子でなくても、何らかの情報を分子に記憶させる事はできるはずです。分子の構造や立体化学の違いとして記録してもいいでしょう。組み合わせ方も例えばDNAのように三つのコドンを一つの情報にするなどすれば組み合わせ方は無限に作り出せます。

 

polymer_2.jpg図は文献[4]より引用

これらの分子で問題となるのは情報の記録方法と読み込み方法です。これさえクリアーできれば情報記録デバイスとしての有機高分子化合物の可能性はまだまだ残っているように思えます。

有機vs無機のような単純な対立ではなく、今後益々増大する情報量の記録、長い期間保存するべき重要な情報の記録という分野に有機化合物、有機高分子化合物が果たす役割というものがあるように思います。

Advanced tasks such as polymer chain encryption and polymer sequencing are attainable.

情報の記録分子としてDNAのような核酸を使う方法も考案されておりますが、より単純な高分子化合物の配列を制御した合成によって情報の読み、書きを可能とする方法も開発されてきています。そんな中で最近Meierらによって報告された方法を少しだけ紹介しましょう[4]

 

polymer_3.pngPasserini three-component reaction (P-3CR)

彼らはPasserini 3成分連結反応を用いて鎖を伸張していくというアプローチを試みています。ポリマーといっても4回のシーケンスが実現したのみですので、まだまだ大きな分子にまで展開できるかどうかは未知数です(PEGとのコポリマーは合成可能)。また一つの反応容器で完結するわけではなく、チオール-エン反応、Passerini 3成分連結反応を別々に行わなければならないという点も非効率と言えます。まだまだ課題はありますが、こういった手法を参考に何か大きなブレークスルーがあれば有機化合物(高分子化合物)を用いた情報の記録が実現する日も来るのかもしれません。

 

今回のポストはNature Chemistry誌のthesisを参考に送らせていただきました(今月はthesisっぽくなくてmini-reviewみたいな感じでした・・・)。

 

Information-containing macromolecules

Colquhoun, H.; Lutz, J.-F. Nature Chem. 6, 455-456 (2014). Doi: 10.1038/nchem.1958

 

関連文献

1, Lutz, J.-F., Ouchi, M., Liu, D. R., Sawamoto, M. Science 341, (6146). doi: 10.1126/science.1238149

2, Pfeifer, S., Zarafshani, Z., Badi, N., Lutz, J.-F. J. Am. Chem. Soc. 131, 9195-9197 (2009). doi: 10.1021/ja903635y

3, Espeel, P. et al. Angew. Chem. Int. Ed. 52, 1326113264 (2013). doi: 10.1002/anie.201307439

4, Solleder, S. C., Meier, M. A. R. Angew. Chem. Int. Ed. 53, 711714 (2014). doi: 10.1002/anie.201308960

 

関連書籍

[amazonjs asin=”4274213765″ locale=”JP” title=”合成高分子クロマトグラフィー”][amazonjs asin=”4048664611″ locale=”JP” title=”超速SSDにサクッと乗り換えられる本 (アスキームック)”][amazonjs asin=”4047318841″ locale=”JP” title=”ギネス世界記録2014 (単行本)”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. リチウムイオンに係る消火剤電解液のはなし
  2. 合成化学の”バイブル”を手に入れよう
  3. アブノーマルNHC
  4. 細孔内単分子ポリシラン鎖の特性解明
  5. 青色LEDで駆動する銅触媒クロスカップリング反応
  6. 日本プロセス化学会2023ウィンターシンポジウム
  7. 【環境・化学分野/ウェビナー】マイクロ波による次世代製造 (プラ…
  8. 便秘薬の話

注目情報

ピックアップ記事

  1. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  2. ベンゼン環が速く・キレイに描けるルーズリーフ
  3. ダルツェンス縮合反応 Darzens Condensation
  4. 小学2年生が危険物取扱者甲種に合格!
  5. ドナルド・トゥルーラー Donald G. Truhlar
  6. 島津製作所 創業記念資料館
  7. as well asの使い方
  8. 湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜
  9. ケムステの記事が3650記事に到達!
  10. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー