[スポンサーリンク]

一般的な話題

有機化合物で情報を記録する未来は来るか

[スポンサーリンク]

 

突然ですが皆さんのパソコン歴はどれ位ですか?

正確に思い出せないにしても、最初にどんな記憶装置を使っていたかで大体見当はつきます。

現在では記憶装置ではSSDとか、USBメモリが一般的ですね。少し前ならHDDと3.5インチのフロッピーディスクでしょうか。えっ?フロッピーは5インチでしたか?

他にもMOとかZIPとかJAZZとかもありましたね。まさかとは思いますがカセットテープじゃないでしょうね?

時代によって入手可能な記憶デバイスの容量、取り扱う情報の容量は異なりますが、一つだけ確かな事はその容量は増える一方であるということです。増大する情報量に対して、記憶メディアの進歩は追いつけるのでしょうか?そして化学はどんな答えを見つける必要があるのでしょうか?

記事をお読みの皆様はPCの画面、もしくはスマホの画面をご覧だと思います。PCの記憶デバイスの容量は数100GBから数TB、スマホなら数10GBという単位の記憶容量だと思います。ひと昔前なら信じられないような容量ですが、結構一杯になりますよね。

もう見ることも無くなってきた3.5インチフロッピーディスクの容量はなんと1.4 MBでしたか。音楽ファイル一曲分にもなりません。筆者が最初に買ったのはカセットテープというものにデータを録音して記憶するというものでした。カセットテープの時代はせいぜい必要なデータ容量は数10kB、インターネットの接続回線も初めて引いたのは56kbpsでした。ちなみにケムステの記事1ページの容量は約1.5 MBですので、常時最大速度が出たとしても読み込むのに3分30秒程度はかかる計算です。
polymer_1.jpg

いずれにしてもこれら情報を記憶しておくために用いられているのは無機化合物です。磁気的、もしくは電気的な信号の出し入れによって情報を読み書きしています。しかし無機化合物による情報の記録には難点が幾つかあります。

例えば、磁気的、電気的記録は寿命が短いということや、ディスクやメモリのように化合物をある適切な形状に加工しなければならず、決して小さくない容積を占めることなどです。

寿命が最も長い記録方法は石板だと言われています。古代の情報が現代までしっかり伝わっています。これに習い、後世に残したい情報をガラスに残そうとする試みもあるようです。

容積については記録メディアの集積化によってどんどんダウンサイジングされています。ひと昔前のUSBメモリは数10MBとかでしたが、今は数GBの物が千円以下で買えたりします。ハードディスクドライブも4TBのものが購入可能です。しかし、現代の技術でも1ZB (1015 MB)の情報を記憶するためのHDDの製造には約1000 Kgのコバルト合金が必要です。ちなみに1ZBというのは1日に世界で生み出される情報量とされています。

 

以上のような問題点を解決すべく日夜研究開発が続けられていると思いますが、ふと見ると桁違いに効率の良い情報記録物質があることに気づきます。あなたもたくさん持っている物質です。そう、DNARNAです。これらのバイオポリマーは生命の情報記録に用いられていると考えることができます。DNAであれば理論上数グラムで1ZBの情報を記憶可能です。そう考えると有機化合物、有機高分子化合物は情報の記録メディアとして有望に思えます。

 

実際このようなコンセプトの基、高分子化合物に情報を記憶する試みに関する論文も報告されており[1, 2, 3]、これからますますホットなトピックスになりそうです。

DNAのような分子でなくても、何らかの情報を分子に記憶させる事はできるはずです。分子の構造や立体化学の違いとして記録してもいいでしょう。組み合わせ方も例えばDNAのように三つのコドンを一つの情報にするなどすれば組み合わせ方は無限に作り出せます。

 

polymer_2.jpg図は文献[4]より引用

これらの分子で問題となるのは情報の記録方法と読み込み方法です。これさえクリアーできれば情報記録デバイスとしての有機高分子化合物の可能性はまだまだ残っているように思えます。

有機vs無機のような単純な対立ではなく、今後益々増大する情報量の記録、長い期間保存するべき重要な情報の記録という分野に有機化合物、有機高分子化合物が果たす役割というものがあるように思います。

Advanced tasks such as polymer chain encryption and polymer sequencing are attainable.

情報の記録分子としてDNAのような核酸を使う方法も考案されておりますが、より単純な高分子化合物の配列を制御した合成によって情報の読み、書きを可能とする方法も開発されてきています。そんな中で最近Meierらによって報告された方法を少しだけ紹介しましょう[4]

 

polymer_3.pngPasserini three-component reaction (P-3CR)

彼らはPasserini 3成分連結反応を用いて鎖を伸張していくというアプローチを試みています。ポリマーといっても4回のシーケンスが実現したのみですので、まだまだ大きな分子にまで展開できるかどうかは未知数です(PEGとのコポリマーは合成可能)。また一つの反応容器で完結するわけではなく、チオール-エン反応、Passerini 3成分連結反応を別々に行わなければならないという点も非効率と言えます。まだまだ課題はありますが、こういった手法を参考に何か大きなブレークスルーがあれば有機化合物(高分子化合物)を用いた情報の記録が実現する日も来るのかもしれません。

 

今回のポストはNature Chemistry誌のthesisを参考に送らせていただきました(今月はthesisっぽくなくてmini-reviewみたいな感じでした・・・)。

 

Information-containing macromolecules

Colquhoun, H.; Lutz, J.-F. Nature Chem. 6, 455-456 (2014). Doi: 10.1038/nchem.1958

 

関連文献

1, Lutz, J.-F., Ouchi, M., Liu, D. R., Sawamoto, M. Science 341, (6146). doi: 10.1126/science.1238149

2, Pfeifer, S., Zarafshani, Z., Badi, N., Lutz, J.-F. J. Am. Chem. Soc. 131, 9195-9197 (2009). doi: 10.1021/ja903635y

3, Espeel, P. et al. Angew. Chem. Int. Ed. 52, 1326113264 (2013). doi: 10.1002/anie.201307439

4, Solleder, S. C., Meier, M. A. R. Angew. Chem. Int. Ed. 53, 711714 (2014). doi: 10.1002/anie.201308960

 

関連書籍

[amazonjs asin=”4274213765″ locale=”JP” title=”合成高分子クロマトグラフィー”][amazonjs asin=”4048664611″ locale=”JP” title=”超速SSDにサクッと乗り換えられる本 (アスキームック)”][amazonjs asin=”4047318841″ locale=”JP” title=”ギネス世界記録2014 (単行本)”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 電子実験ノートもクラウドの時代? Accelrys Notebo…
  2. 電流励起による“選択的”三重項励起状態の生成!
  3. 材料開発における生成AIの活用方法
  4. 海外留学ってどうなんだろう? ~きっかけ編~
  5. 2020年の人気記事執筆者からのコメント全文を紹介
  6. 「新反応開発:結合活性化から原子挿入まで」を聴講してみた
  7. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  8. 電子実験ノートSignals Notebookを紹介します ①

注目情報

ピックアップ記事

  1. スルホキシイミンを用いた一級アミン合成法
  2. 学振申請書の書き方とコツ
  3. アレノフィルを用いるアレーンオキシドとオキセピンの合成
  4. モリブドプテリン (molybdopterin)
  5. 不斉反応ーChemical Times特集より
  6. ノルゾアンタミンの全合成
  7. 井上 将行 Masayuki Inoue
  8. 配位子が酸化??触媒サイクルに参加!!
  9. イミデートラジカルを用いた多置換アミノアルコール合成
  10. 単分子の電気化学反応を追う!EC-TERSとは?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP