[スポンサーリンク]

一般的な話題

サムスン先端研恐るべし -大面積プリンタブルグラフェンの合成-

[スポンサーリンク]

韓国サムスンが主導した共同研究で興味深い結果が出ていますので紹介いたします。

Tshozoです。桜が綺麗な季節が過ぎました。桜が散っていく様は何歳になっても感慨深いもので、この様子を見る人の心も綺麗になるといいですね。特にあのク(略)

 早速ですが、韓国サムスン先端研-成均館大のチームの研究開発力を思い知った報道+論文がありましたのでお知らせしたいと思います。その論文とはこちら →   大面積(φ450レベル)の単層グラフェン合成に成功したという、”Science”誌のものです(Title: “Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium”)。

 同社は以前からグラフェンの大面積合成に対し積極的な活動を進めており、数年前にはRoll to Roll(印刷型と思って頂ければ構いません)型の銅を用いた大面積グラフェン合成/転写成功の成果を発表していました(→  と )。

GRF_03.pngRoll to Roll プロセスイメージとそのタッチパネルへの応用 図は上記論文(→  と )より引用

 しかしその時の出来上がったグラフェンブロック(島)サイズはそこまで大きなものではなく、伝導率もさほど高くありませんでした。それに対し今回のは大きくのブロックサイズが上がったもので、極めてレベルの高い単層グラフェンが平板内で実現しています。しかも基盤から単層グラフェンが転写できる!

GRF_02.png

今回の代表的な成果のイメージ 本論文より引用

 この進歩、一体どのような着眼点で成し遂げたのでしょうか。グラフェンの概要と、前回・今回の研究の要である「CVD(Chemical Vapor Deposition)」技術を紹介しながら検証していきます。化学というより少し物理寄りの記事になってしまうのですが、お付き合いください。

まずグラフェンの概要から。グラフェンは炭素の一形態で、グラファイトのその1層分の構造、2次元(2D)構造にあたります。

GRF_10.pngカーボンの形態一覧 図はこちら→  より引用?

 これが何故注目されるかと言いますと、第一にその電子移動度の高さにあります。非欠陥グラフェンが形成された場合、その電子移動度は現状のシリコンの100倍(隣接する原子にも規制されますが)。これが集積回路の作動Upにも繋がります。またその薄さと論理回路が容易に形成できる点魅力の一つでしょう。既に多くの論文でグラフェンを用いた論理回路が実現されています。またその電子の状態も、通常の電子移動ではなく「ディラック方程式」というシュレーディンガー方程式の発展系にあたるメカニズムに従って移動するという特殊性から、物理屋さんの興味を引き付けてやみません。ただ、この話の詳細はめんどくせぇ数式を色々いじる必要が出てくるのでまたの機会に。

? で、今回の話。このグラフェンの作り方ですが、本件でノーベル賞を受賞されたAndre Geim & Konstantin Novoselov両博士のやり方は有名ですね。3M社が創ったロングヒットセラー、「スコッチテープ」で炭(一説には鉛筆からとも)から引きはがすという正にコロンブスの卵なプロセス。お二人のこの発想により、グラフェンの物理的特性を正確に測定することが出来、爆発的な研究トレンドの増加を見たわけです。つまりスコッチテープで延々炭を引きはがしたものをうまく加工すれば完璧な大面積グラフェンが実現し得るのです。嘘です。

GRF_05.png グラフェン「発見者」 Andre Geim & Konstantin Novoselov 写真はこちらより引用 → 

GRF_07.pngGrapheneを最初に「抽出」したときのイメージ まさかこんな簡単なことで・・・ 図は同上より引用

 ・・・工業的なことを考えるとグラファイトから延々引きはがすわけにもいかんですので、世の中のほとんどのグラフェン合成には上記の「CVD」という方法を用いています。純粋な合成化学の方から見ればあまりなじみがないかもしれませんが、皆さんがよく目にする「青色ダイオード」、元日亜化学の中村修二教授が端緒を開いたこの材料も、あの中心プロセスはこのCVD(より絞って言うとMOCVD「有機金属CVD」)で実現されました。

GRF_09.png 現時点で明らかなグラフェン合成プロセス一覧 今回の論文で適用されたのは左下の図に相当する手法

(文字が少し小さいですので、引用元のスライド資料をご覧ください → 

「CVD 化学気相成長(化学的蒸着法)」というのは用途が広く、半導体や表面処理には多様されています。特に半導体にはかなり幅広く使用され、国内の著名装置メーカですとアルバック殿、海外ですとOxford InstrumentsやAixtron等の企業がひしめき合いながら競争を繰り広げる先端プロセス分野です。下記は、あくまで「熱CVD」に絞って話をします。

GRF_08.png CVDのプロセスイメージ、 装置イメージ、代表的な装置メーカ各社のロゴ

 

このCVDのおおまかなプロセスのステップは上図のように3つからなります。

①超絶綺麗な基板(シリコンなど)を用意する、又はチャンバに入れた後綺麗にする

②モノ(主に薄膜)を付けたい基板を熱する(モノにもよるがだいたい800℃以上)

③原料ガス(又は原料+キャリアガス)を基板表面に吹き付け、基板表面で分解させて所定の組成を堆積させる

例えばシリコン系の膜を作る場合だとこのガスがシラン系ガスだったり、金属膜だったりすると有機金属錯体(Organometallics)だったりして、それらを用いてAから数μmまでの厚みの膜を作ることが出来ます。太陽電池、半導体、表面改質等でその用途は極めて広く、化学メーカもその原材料供給に大きな役割をはたしています。

で、従来のグラフェン合成の場合もほとんど上記に挙げたプロセスと同じで、

①G:超絶綺麗な金属基板(銅など)を用意する

②G:基板を熱する

③G:アセチレン等の炭化水素ガスを基板表面に吹き付ける

④G:原料ガスが金属表面で脱水素化する

⑤G:脱水素化した炭素が表面で結合してグラフェン化、又は金属に潜り込んだ炭素がグラフェン化した後金属外に析出する

? という5つのステップで成り立っています。その中で今回、サムスンのチームは前回の論文を検証し、新しい基板材料を用いることを提案しました。それが今回の論文で用いられた「端末水素化ゲルマニウム」です。この水素化ゲルマニウム、エピタキシャル成長(結晶成長法の一種)でボチボチ使われる材料ではありますが、正直そこまでメジャーな材料ではないです。しかし、サムスンのチームはグラフェンが表面拡散しにくい従来材料(銅)を用いたのでは、質の高い大きなグラフェンを作るのに必要なグラフェンブロック(アイランド)が集合出来ないことを見抜き、今までと違う材料を基板に選択したわけです(水素化ゲルマニウム上のグラフェン表面拡散の様子はこの動画 →  を見るとわかりやすい)。論文にも記載されていますが、以下5点に注目したとのことです。

①HCガスを分解するちょうどよい触媒活性

②カーボンに対する低い相溶性

③高結晶性

④大面積化可能

⑤カーボンに近い熱膨張性

しかも今回の結果で驚愕なのが、このゲルマニウム基板、単層グラフェンを剥がした後リユースできるのです。もちろん半導体レベルに本当に使えるのか検証は必要ですが、これは恐るべき特長ではないでしょうか。そう、指定部のみにグラフェンを合成→Si等にナノインプリント手法で印刷→もっかい合成→印刷→・・・のプロセスが成り立ってしまうのです。これはSi表面上にグラフェンのパターニングが出来る、つまりグラフェン集積回路が繰り返し作製出来るというポテンシャルを示しており、このインパクトの高さからもScience誌に載るのは当然と筆者は感じます。

GRF_11.png Si上にプリントしたグラフェンとその繰り返し転写結果(同論文より引用)
Raman分光法はカーボンの結晶構造を測定するのに頻繁に使用される手法

 しかも出来上がったグラフェンプリントは、可視光(550nm)付近で98%近い透過率を持つ(同論文参照)。おそらく、同社のことですから数年内に何らかの商品に搭載・実用化してくるでしょう。

今回の結果から拙速に判断するのは危険とは思いますがそれでも敢えて申し上げると、サムスンの研究レベルが、模倣から独創へ殻を破りつつある、または既に破っているとしている気がします。またこの分野に限らずあっという間に日本を追い抜いてしまうのではないか、又はもう完全に抜かれているのではないでしょうか。同社のスピードとノルマが凄まじいのはあちこちで有名ですが、実際安全とか規則とか労基とかをあまり気にしてない部分があります(同社が不夜城、と言うのは色々な雑誌にも書かれていることです)。その点が良いというつもりはないですが、少なくともハングリー精神は見習わなければならないと感じます。

一方、日本はと言うと昭和中期~後期に独創へ殻を破ったあと、奇妙な道を通って結局また模倣に戻ってしまっている気がします。実際の研究開発現場では色々と楽しい発想が出ているのですが、それを生かし切れていないのは、前回( )書いたようにオペレーションに偏った研究開発マネジメントの仕組みとその無責任官僚的発想に基づいたアクションによるものが大きいでしょう。

たとえば研究の中身を問わずにタイトルに「とにかくスーパーとか超とかを付ければいい」的な安直かつ哲学/グランドデザインの無い決定に陥るのは、見た目にハデなものを選んで打ち上げて後のことを全く考えない輩が上の意思決定者がその職に就いてしまうこと、それを十分に防止できないことという仕組みそのものに問題がある気がしていますが・・・。こうしたことは今に始まったことではなく筆者も何度も見てきたのですが、社会が平衡状態に陥るとどうしてもリスク防衛が先行して取組みが現状維持に留まり、代わりに規制がグダグダと増えていくことは彼ら(意思決定者)の保身上、仕方ないのかもしれません。もちろん彼らにも彼らの人生と家族がありますから、一概に批判は出来ないのですけど。

さて、今回の成果を受けて化学者の方々にご相談なのですが、CVDに頼ること無く化学合成側からこうした大面積グラフェンを合成する手段はないのでしょうか。CVD装置は高いですしねぇ。例えば粘度の高い2層分離する液体の境界で均一な反応を起こすとか、水銀表面で反応させるとか(・・・推奨できませんが)。個人的には電気化学手法を使って面白い反応が進まんかなぁと夢想しているのですが。「アホか」と思われるような反応コンセプトも実際にやってみたらおもろい結果が出来るかもしれません。皆様の活躍を期待いたします。

ともかく、以前の記事でも申し上げましたが、研究現場での楽しい発想を生かせるような場を作っていければと切に願うものであります。サムスン社に負けぬよう、各位リラックスして研究開発に励んでまいりましょう。


【本記事を作成するにあたり、下記のWeb上資料を参考にしました 論文以外のリンクは各行に埋め込んであります】

●Graphene – Carbon of the 21st century Expert panel ?Graphene”

●Graphene: A flexible technology

●GrpaheneSynthesis by CVD

●GRAPHENE FLAGSHIP – Working together to transform scientific excellence to technological impacts

【関係論文】

本論文 → http://www.sciencemag.org/content/324/5932/1312.full.pdf

以前の論文は下記2件

http://www.nature.com/nnano/journal/v5/n8/full/nnano.2010.132.html

Click to access a559352.pdf

Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 生きた細胞内でケイ素と炭素がはじめて結合!
  2. 石谷教授最終講義「人工光合成を目指して」を聴講してみた
  3. マテリアルズ・インフォマティクスにおける分子生成の基礎
  4. 2012年ノーベル化学賞は誰の手に?
  5. Chemの論文紹介はじめました
  6. MOF 内の水分子吸着過程の解析とそれに基づく水蒸気捕集技術の向…
  7. 【25卒 化学業界就活スタート講座 5月13日(土)Zoomウェ…
  8. Ns基とNos基とDNs基

注目情報

ピックアップ記事

  1. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miHub」のアップデート情報をご紹介 -分子構造を考慮した解析、目的変数の欠損値補完編-
  2. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part III
  3. 元素ネイルワークショップー元素ネイルってなに?
  4. 新規糖尿病治療薬「DPPIV阻害剤」‐熾烈な開発競争
  5. ボツリヌストキシン (botulinum toxin)
  6. 高純度フッ化水素酸のあれこれまとめ その2
  7. モータータンパク質に匹敵する性能の人工分子モーターをつくる
  8. 君はPHOZONを知っているか?
  9. 薬の副作用2477症例、HP公開始まる
  10. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー