[スポンサーリンク]

化学者のつぶやき

ブロック共重合体で無機ナノ構造を組み立てる

[スポンサーリンク]

有機材料・無機材料いずれの領域でも、「ナノスケール構造の精密制御された素材創出法」は重要研究課題とされています。

とりわけ近年では、次世代エネルギー技術(色素増感太陽電池、バッテリー、燃料電池etc)がその有望な応用先とされています。これら技術に内在する諸問題(エネルギー効率向上など)を解決しうる、共通かつ有効な手立てと考えられているためです。

今回はブロックコポリマーを用いた構造制御法の一つ「CASH法」をご紹介します[1]。

ブロックコポリマーとは、各モノマーが各々長く連続する複数の領域を持つポリマーのことです。2領域から構成される場合はジブロック体、3領域ならトリブロック体・・・と呼ばれます。

各領域がそれぞれ相反する親水性・疎水性を持つ両親媒性である場合には、ポリマー鎖がモノマー構造・構成比などに応じた特定の形状に自己組織化することが知られています。

この組織化構造を支持体として、無機材料orハイブリッド材料のナノ構造を簡便に構築する方法がCASH法(combined assembly by soft and hard chemistry method)と呼ばれるものです。

両親媒性ジブロック共重合体の親水性部分は、特に金属原料と親和性が高いため、比率を適切に変えて混合することで、無機材料を様々な形状に自己組織化出来ます。これはすなわち、デバイスに応じた最適ナノ構造を簡便に作れると言うことです。

CASH_1

さらにこの自己組織化体を熱処理することで、ポリマー部分をグラファイトへと変換します。こうすることで構造崩壊を防ぎ、無機材料の結晶性を高めることも出来ます。酸素雰囲気で熱処理を行えば、支持体としてのポリマーを除去することも容易です。

CASH_2

具体的応用の詳細については総説[1]をご覧頂きたいですが、従来の構造制御法と異なり、ナノ構造の表面積を高められる、構造体の方向制御が3次元的にできる、支持ブロックポリマーが備える機能も付与可能、非酸化物金属でもナノ構造を維持出来 などの特徴があるようです。

CASH_3

安定化配位子を組み込み、金属Ptナノ粒子をメソポーラス型に自己組織化させた例[2]

現状はジブロック共重合体を用いる展開が主のようですが、今後はトリブロック体を使ったより複雑かつ精密な構造制御、ナノスケールよりもさらに大きなマクロスケールでの構造制御を組み合わせることを目標としているようです。

トップダウン法では不可能な構造制御が行えるため、エネルギー伝達ロスの低減目的などには向きそうな手法だと思えます。また弱い結合に依拠する自己組織化体は得てして構造不安定さに悩まされるのですが、これを熱処理によって固めてしまうことで、材料応用に必要な強度を捻出して応用範囲を広げる発想も興味深いと思えます。

ブロックポリマー自体は古典的技術ですが、これをナノスケールでの基礎研究・ハイブリッド材料へと上手く展開させ、新しい応用を切り開いている好例と言えるでしょう。今後の発展が期待されます。

(画像は総説[1]およびWiesner Groupホームページから引用しました)

 

関連文献

[1]”Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells” Orilall, M. C.; Wiesner, U. Chem. Soc. Rev. 2011, 40, 520. DOI: 10.1039/C0CS00034E
[2] “Ordered Mesoporous Materials from Metal Nanoparticle-Block Copolymer Self-Assembly” Wiesner, U. et al. Science 2008, 320, 1748. DOI: 10.1126/science.1159950

 

関連書籍

[amazonjs asin=”B000QF4D6Q” locale=”JP” title=”Block Copolymers: Synthetic Strategies, Physical Properties, and Applications: Synthetic Strategies, Physical Properties and Applications”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 今年も出ます!!サイエンスアゴラ2015
  2. イオンの出入りを制御するキャップ付き分子容器の開発
  3. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  4. 環サイズを選択できるジアミノ化
  5. アルドール・スイッチ Aldol-Switch
  6. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金…
  7. 痔の薬のはなし 真剣に調べる
  8. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~

注目情報

ピックアップ記事

  1. ヒューマンエラーを防ぐ知恵 増補版: ミスはなくなるか
  2. ヘルベルト・ワルトマン Herbert Waldmann
  3. 研究者・技術系ベンチャー向けアクセラレーションプログラム”BRAVE”参加者募集
  4. ビタミンB1塩酸塩を触媒とするぎ酸アミド誘導体の合成
  5. 【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE
  6. 紹介会社を使った就活
  7. 危険物データベース:第3類(自然発火性物質および禁水性物質)
  8. どろどろ血液でもへっちゃら
  9. フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-
  10. 抗がん剤などの原料の新製造法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP