地球上の生命体が遺伝物質としてDNAを使っていること、またその遺伝情報はアデニン(A)、チミン(T)、グアニン(G)、シトシン(C)という僅か4種類の塩基でコードされることは、よく知られた事実です。
このシンプルな遺伝暗号が生み出す20種類のアミノ酸配列(タンパク質)が多種多様な生物機能を担っているわけで、生命の神秘には感動を覚えるほかありません。
しかし現代の化学者は飽くなき野望から、その神秘すら制御しようと考えています。
DNA/RNAに人工塩基対を組み込むアプローチはその一つです。
核酸機能の人工的拡張を目指して
人工塩基対(ここではATCGとは全く骨格の異なるものを指します)の開発研究は、生化学者Alexander Richが1962年に提唱した以下の仮説に端を発しています。
「DNAの塩基の種類を増やすことができれば、DNAの情報や機能を拡張できるはずだ」
仮に第5と第6の人工塩基対をDNAに導入することができれば、伝達パターン(3塩基対コドン)は従来の64通り(4x4x4)から216通り(6x6x6)にまで拡張されます。この拡張コドンに多数の人工アミノ酸を割り当てられれば、新しい人工タンパク質創製にも応用できるはず。またそのようなDNA・RNA自体にも、天然にはない新機能を持たせることができるはず。まさに応用性は無限です。
有機合成で作り上げた人工塩基対をDNAに組み込む研究自体は、実は多く知られています。
例えば東大理学部の塩谷光彦教授は、金属錯体キレートで塩基対を結びつけるアイデアの元、金属原子をDNAに精密配列させる手法を開発しました[1]。新たなナノマテリアル創製を見据えた化学として大変興味深い研究例です。
(画像は文献[1]より引用)
精度良い複製がとにかく大変!
とはいえ塩基対を組む分子を見つけること自体は、実はそこまで難しい話ではありません。人工塩基対のポテンシャルを最大限に活かしつつ、生命化学への応用を考えるならば、避けては通れない大きなハードルは他にあるのです。
それは人工DNAがポリメラーゼで精度高く転写(複製)されなくてはならないということです。
至極当たり前のようでありながら、これを実現しうる人工塩基の開発は並大抵の仕事ではありません。相性問題のために生命システムを上手く活用できないという、人工物に常につきまとう根源とも関わるからです。
生命システムへの応用を視野に入れるには、たいへんな高精度でお互いを見分ける選択性が求められます。なにせ天然DNAの転写エラーは僅かに1/10000 (エラー訂正機能を加味した複製過程ではなんと1/109!)という正確さです。
人工系でこれほどの選択性を為しとげる策はきわめて乏しいものでした。ただただ構造微調整という試行錯誤を繰り返す、泥臭い苦難の先にある世界といえるでしょう。
A-T・C-Gペアの構造を精査することで、「生命系が複製可能な塩基対となるには、どういう特性が重要か」という問題についての洞察がかねてより持たれています。これまでに開発されたPCR複製可能な塩基対の例を以下に示しておきます[2]。水素結合は必ずしも重要ではなく、塩基対同士の形状フィッティング、双極子モーメント、塩基対のスタッキングなどが重要な特性ということが分かってきました。
そして長年にわたる格闘のすえ、ついにこの難問を解決した事例、すなわちポリメラーゼによる超高精度複製を行える人工DNA塩基対(Ds-Px:>99.9%/サイクル)が開発されるに至ったのです。
次回はこの応用例を一つ紹介してみたいと思います。
関連文献
- “Programmable self-assembly of metal ions inside artificial DNA duplexes” Shionoya, M. et al. Nat. Nanotech. 2006, 1, 190. doi:10.1038/nnano.2006.141
- 「人工塩基対の分子設計」, 平尾一郎、TCIメール [PDF]