[スポンサーリンク]

化学者のつぶやき

JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ②

[スポンサーリンク]

 

前回の記事で、株式会社JEOL RESONANCEの開発している「UlrraCOOLプローブ」を紹介するにあたり、基本知識について紹介させていただきました。例えば、NMRの利点と問題点、感度をあげるためのプローブの開発の試み、UltraCOOLプローブの名前の由来、極低温にするとどうして感度があがるのだろうか?などです。今回の記事では実際、UltraCOOLプローブの謎に迫っていきたいと思います。

S/N比と極低温プローブの環境

前回の記事で、極低温にすることで熱的なノイズを減少させてS(signal)/N(noise)比を高めることができるとお話しました。具体的には、極低温プローブでは、一般に検出コイルと信号増幅回路であるプリアンプをそれぞれ冷却します。これらの回路に使用される金属材料は、冷却されることによって電気抵抗が減少します(Q値の増大)。これと同時に熱的ノイズも減少されるため、極低温プローブの感度は、温度の逆数に比例することになります。S/N比を求める式は以下の通り。


cryo3.png

 

式からも明らかなように、極低温に冷却された検出回路は、感度を大幅に向上させます。検出回路の冷却は、冷凍機によって極低温に冷却されたHeガスを循環させることで実現されます。この際に検出回路のみが冷却され、試料は室温に保たれていなければなりません。極低温のコイルと室温の試料との温度差は300K以上に達しますが、それらの間は真空断熱層で熱的に分離されています。(下図)

cryo4.png

また、プローブ内部は断熱のために高真空に保たれている必要があります。極低温プローブは、高真空と極低温を発生させ、そのような過酷な環境下で動作させるため、かなり大掛かりな装置となります。


cryo5.png

一般的には、He冷凍機による冷却によって、室温の4倍から5倍程度の感度向上が達成されます。NMRにおける信号の積算は信号の強度増加と同時にノイズの増加もあるため、SN比は積算回数の1/2乗に比例することになります。従って、感度が4倍から5倍であれば、同じSN比のスペクトルを得るために必要な積算回数は1/16から1/25で良いことになります。これはとりもなおさず、測定時間を極端に短縮することができることを意味します。これまで数日かかっていた測定が数時間で完了するため、装置の運転効率を著しく向上させることが可能となります。

 

極低温で感度MAX!「UltraCOOLプローブ」

では、実際のUltraCOOLプローブをみてみましょう。といっても記事のトップに掲載されている画像がソレです。

UltraCOOLプローブは、極低温プローブの特長である超高感度測定だけでなく、ポリマーなどの分析に必要となる、安定した高温測定が可能です。運転中は閉鎖系での冷却によりHeを消費することはありません。長い実績のあるオートチューニング・マッチング機構も装備しているため、大がかりな装置ではありますが、一旦起動、冷却してしまえば、全ては通常の室温プローブとほとんど変わらない使用感で利用できます。

例えば、?13Cの感度向上に最適化されたプローブでは、室温プローブと比較して5倍以上の感度を達成(下図)し、測定時間を1/25以下に短縮します。


cryo6.png

13Cは、室温プローブでは積算を重ねないと信号が得られませんが、UltraCOOLプローブでは1 scanでほぼ全ての信号が確認できます。(下図)

cryo7.png

また、13C-13Cの結合を明らかにするINADEQUATE測定では、現実的な時間でほぼ全ての結合を検出することができています。(下図)正直普通のNMRではINADEQUATE測定は事実上不可能です。

cryo8.png

例えば、この試料では43時間で結果が得られていますが、同じ測定を室温プローブでおこなった場合、25倍の1075時間に及ぶ積算が必要になります。45日間の積算はまったく現実的ではありません。

さらに、UltraCOOLプローブは、150℃までの高温測定を安定して実行することができます。150℃での測定では、近傍にあるコイルと試料の温度差が400℃を越えますが、長時間に渡る測定でも安定して検出が可能です。

 

おわりに

筆者自身これを体験できるのはあと半月先になりますが、これまで学生時や以前の職場でブルカー社のクライオプローブを使ってきました。正直普通のNMRとは全く別物です。勘違いしないでいただきたいのは、操作は全く同じ普通のNMRです。感度が圧倒的に異なり、1mgほどしかない複雑な骨格を有する化合物でも1時間ほどで非常にきれいな13CNMR測定ができました。このプローブは13Cの感度向上に特化していますが、1H-NMRにおいても圧倒的な感度が得られます。普通のNMRではどんなに積算してもノイズしかみられないごく少量サンプルでも、積算を重ねると数mgあるようなきれいなNMRスペクトルが得られました。副生成物や極少量のサンプルの構造決定に大変威力を発揮すると期待しています。

問題は価格。

このプローブ自体が通常のNMRマシンと同じ程の価格であること。600MHzのNMRとUltraCOOLプローブを導入するとなると具体的な価格はいえませんが、値引きを考慮しても普通の予算では厳しいです。さらには、極低温を維持するための寒剤や電気代がかさむことです。昔に比べたら良くなったというらしいですが、年間500万近くかかります。これは相当大きな予算を抱えていないと運用できないかもしれません。

とはいえど、使用者の立場から言えば、感度が高いということは測定時間も短くてよく、多くの研究者が使っても問題ありません。特に溶解度の低い化合物や四級炭素ばかりの化合物でNMR測定がまともに出来なかった研究を加速する、さらには新しい化学を創出する可能性も大いに考えられます。そんな夢のプローブ、ぜひ使ってみませんか?

 

参考サイト

本記事はJEOL RESONANCE社から寄稿いただいた文章に加筆したものです。

関連書籍

[amazonjs asin=”4062803038″ locale=”JP” title=”よくある質問 NMRの基本 (よくある質問シリーズ)”][amazonjs asin=”4781912958″ locale=”JP” title=”磁気共鳴‐NMR―核スピンの分光学 (新・物質科学ライブラリ)”][amazonjs asin=”4759811931″ locale=”JP” title=”有機化学のためのスペクトル解析法-UV、IR、NMR、MSの解説と演習”][amazonjs asin=”480790633X” locale=”JP” title=”有機化合物のスペクトルによる同定法―MS,IR,NMRの併用”]

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 掃除してますか?FTIR-DRIFTチャンバー
  2. 自由研究にいかが?1:ルミノール反応実験キット
  3. 第29回光学活性化合物シンポジウム
  4. 【PR】Chem-Stationで記事を書いてみませんか?【スタ…
  5. スズ化合物除去のニュースタンダード:炭酸カリウム/シリカゲル
  6. 不斉反応ーChemical Times特集より
  7. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  8. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝…

注目情報

ピックアップ記事

  1. ChemDrawの使い方【作図編①:反応スキーム】
  2. 「優れた研究テーマ」はどう選ぶべき?
  3. 複雑な化合物を効率よく生成 名大チーム開発
  4. アミール・ホベイダ Amir H. Hoveyda
  5. 分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在
  6. 留学せずに英語をマスターできるかやってみた(6年目)(留学後編)
  7. 映画「分子の音色」A scientist and a musician
  8. 【書籍】フロンティア軌道論で理解する有機化学
  9. 第31回 ナノ材料の階層的組織化で新材料をつくる―Milo Shaffer教授
  10. 無保護糖を原料とするシアル酸誘導体の触媒的合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー