[スポンサーリンク]

化学者のつぶやき

同位体効果の解釈にはご注意を!

[スポンサーリンク]

化学反応の機構解析に威力を発揮する一つが速度論的同位体効果(KIE)の測定。ざっくり述べると、「重い同位体を含む結合を切る化学反応は、軽い同位体の反応に比べて速度が遅くなる現象」です。

KIEを適切に測定すると、どの結合がどの段階で切れているかに加え、遷移状態・律速段階などに関わる貴重な情報が得られます。とりわけ近年の一大研究領域である触媒的C-H活性化反応では、変換標的が炭素-水素結合であること、重水素置換はKIEを大きな値として観測しやすいことから、機構解析のスタンダードとして使われるまでになっています[1]。

しかし、有機金属化学の大家・J.F.Hartwig教授はこの潮流をうけ、「実情はそれほど単純ではなく、KIEの解釈には気をつけなければならない」と警鐘する旨の論説を発表しています。すこし専門的ながら興味深い話ですので、かいつまんで紹介してみましょう。

On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transition-Metal Complexes
Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066. DOI: 10.1002/anie.201107334

※今回の記事では「KIE=一次の速度論的同位体効果」とします。

KIEだけで律速段階は分かるのか?

『KIEが観測されている=律速段階はC-H結合の切断である』と結論している間違いが非常に多い、と著者らはまず述べています。

C-H活性化の機構解析に汎用される実験法は、以下の3パターンに大別されます。

KIE_alert_2

反応式は論文から引用

このうちA型実験はそもそも精密測定が難しく手順も面倒で、厳密にやる人は多くありません。一方のB・C型実験は、実験誤差を少なく出来、特殊な実験手順を設定せずとも良いことが利点です。とにかく簡便に解析できるため非常に好まれる傾向にあり、B・C型データだけで結論を導いている論文も、実に多く見られます。

しかしながら、「KIEが観測される=C-H結合の切断が律速段階である」ことの論拠として妥当なのは、A型実験による結果だけです。ここは理解しておくべきでしょう。一見して同じことを調べている実験ですが、厳密に同じアウトプットを出していないのです。

 

反応によってKIE観測パターンが違ってくる?

実例を示すべく著者らは、以下の5ケースを取り上げ、エネルギー図付きでKIEの出方がまったく違うことを論じています。


さらに現実的なデータ解釈時には、触媒条件であればinduction periodの介在、触媒失活、定常状態近似から外れるなどで、反応速度が影響を受けやすいことにも留意する必要があります。見落としがちですが、B・C型実験をNMR解析する場合、重水素の分子間クロスオーバーが起きている可能性も考慮しておかねばなりません。他にもいろいろポイントが挙げられていますので、詳しくはエッセイをご覧ください。

 

解釈に注意を要する実例

こういった事情ゆえに、A~Cのうち特定のKIE測定を行うだけでは、結論が導けないケースが多々考えられます。相当する事例が文中でいくつか取り上げられています。

KIE_alert_4

反応式は論文から引用

たとえば上の事例[2]では(a)式でC型、(b)式でB型のKIE測定が行われており、それぞれ記載の値が得られています。

仮にC型実験しかやらなければ「C-H結合切断過程が律速である」とのミスジャッジを得がちなのですが、B型実験のKIE値を見ると単純に結論できないことが分かります。

事実この反応は、C-Cl結合への酸化的付加が律速段階(すなわち③のケース)に相当すると結論づけられています。

このような例からも、反応機構を厳密に議論したければA・B・C型実験を一通り実施することが必須と言えます。「簡単に終わって楽に済む実験で、拙速に結論を得ようとする姿勢は、どんなことでも要注意であるなぁ・・・」と考えさせられたりします。

反応開発に取り組む機会のある研究者の方々(特に専門分野的に少しズレてる方や、解析経験の少ない学生さん)は、是非一読されてはどうでしょうか。とっても有意義なエッセイだと思います。

 

関連文献

  1. (a) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857. DOI: 10.1021/cr100436k (b) Jones, W. D. Acc. Chem. Res. 2003, 36, 140. DOI: 10.1021/ar020148i
  2. Geary, L. M.; Hultin, P. G. Eur. J. Org. Chem. 2010, 5563. DOI: 10.1002/ejoc.201000787

関連書籍

[amazonjs asin=”4807905325″ locale=”JP” title=”反応速度論”][amazonjs asin=”4807908502″ locale=”JP” title=”ハートウィグ 有機遷移金属化学(上)”]
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人…
  2. アルカロイド骨格を活用した円偏光発光性8の字型分子の開発 ~天然…
  3. 「決断できる人」がしている3つのこと
  4. GRE Chemistry 受験報告 –試験対策編–
  5. タキサン類の全合成
  6. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  7. エステルからエーテルをつくる脱一酸化炭素金属触媒
  8. 第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開…

注目情報

ピックアップ記事

  1. 高い分離能のCOF膜が作製可能な二段階構築法の開発
  2. 電子雲三次元ガラス彫刻NEBULAが凄い!
  3. 第162回―「天然物の合成から作用機序の解明まで」Karl Gademann教授
  4. 新コース開講! 東大発の無料オンライン英語講座!
  5. 二重芳香族性を示す化合物の合成に成功!
  6. 分子で作る惑星、その名もナノサターン!
  7. 日本プロセス化学会2005サマーシンポジウム
  8. ヘテロ環ビルディングブロックキャンペーン
  9. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の強力ツール~
  10. 第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー