[スポンサーリンク]

化学者のつぶやき

自在に分解できるプラスチック:ポリフタルアルデヒド

[スポンサーリンク]

 

ポリオレフィンやポリエステルといったプラスチックは安定性が非常に高いため、使い捨て容器やPETボトルなどとして幅広く利用されています(図は文献2より引用)。しかし、「安定性が高い」ということを言い換えれば「分解されにくい」ということになります。そのため、自然界に残存したプラスチックが環境汚染の原因となったり、リサイクルしにくかったりといった欠点があります。

しかし、しかし。化学の力は、「自在に分解できる高分子」といったちょっと変わったプラスチック=ポリフタルアルデヒド=Poly(phthalaldehyde)を実現してしまうのです。今回は、そんなポリフタルアルデヒドに関する最近の論文をご紹介します。

[1] Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)
DiLauro, A. M.; Robbins, J. S.; Phillips, S. T.*
Macromolecules 2013, 46, 2963-2968. DOI: 10.1021/ma4001594

[2] Stimuli-Responsive Core-Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane
DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.*
Macromolecules 2013, 46, 3309-3313. DOI: 10.1021/ma400456p

ポリフタルアルデヒドは、酸や熱で分解する高分子であるため、リソグラフィーなどに利用されていましたが、高温にさらさないと分解しないなど、利用が限定されていました。2010年、ペンシルベニア州立大学の Phillipsらはポリフタルアルデヒド末端の保護基を外すと同時に以下の図1のようにカスケード反応が起こり、ポリフタルアルデヒドが分解され原料のフタルアルデヒドへと戻る(解重合する)ことを報告しました[3]。この報告をもとに、ポリフタルアルデヒドの刺激応答性解重合を利用する研究が行われています。

 

PPA4.jpg

図1. ポリフタルアルデヒドの解重合機構

 

文献1では、アリルカーボネート末端をパラジウム触媒により溶液中で脱保護したところ、30分で完全に分解されてしまいました。また、固体状態であっても光により脱保護されるオルトニトロベンジル末端を導入したポリフタルアルデヒドのフィルムに、光照射を行ったところ、末端の脱保護によりフィルムがモノマーへと変換されました(図2, b→c→dまたはe→f→gの変化)。高分子末端の保護基を外すだけの小さな変化が高分子鎖全体の解重合という大きな変化を産み出す、ダイナミックな反応です。
PPA1.jpg

図2. 光によるオルトニトロベンジルの脱保護を利用した解重合(文献1より引用)

 

そんなポリフタルアルデヒドを殻としてカプセルを作成すれば、カプセルの選択的に崩壊させることができます。文献2では、Phillipsらはフッ素により脱保護されるシリル系保護基を導入したポリフタルアルデヒドを用いて、蛍光物質を内包したカプセルを作成しました。シリル系保護基を脱保護できるフッ化テトラ-n-ブチルアンモニウム(TBAF)水溶液にこのカプセルを加えたところ、カプセルの分解が始まり、カプセル内部の蛍光物質が流出して見えなくなっていく様子が観察されています(図3)。

 

PPA2.jpg

図3. マイクロカプセル外殻の解重合により、内部の蛍光物質が時間が経つにつれ消失していく様子 (文献2より引用)

 

このように、ポリフタルアルデヒドからフタルアルデヒドへの解重合を行うことで、原料の完全なリサイクルが可能となります。実際、きれいに解重合が進行しているようで回収したモノマーは再度重合に用いることもできたそうです。このような、特定の刺激に応答して分解する特性はセンサー・自己修復性材料・ドラッグデリバリーなどへの応用が期待されます(モノマーの毒性等問題もありますが)。

 

そして、ポリフタルアルデヒドに限らず、プラスチックリサイクルに関する研究は。現在最も精力的に取り組まれている分野の一つです。例えば解重合技術が進展して、家庭でプラスチックの完全なリサイクルが可能な未来、「この服はもう着ないから、お皿にしちゃお」…なんて未来はそう遠くないのかもしれません。

 

参考文献

[3] Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234−9235. DOI: 10.1021/ja104420k

 

関連リンク

The Phillips Group – Penn State University

 

関連書籍

[amazonjs asin=”4274203131″ locale=”JP” title=”入門 生分解性プラスチック技術”]
Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギル…
  2. 地球温暖化-世界の科学者の総意は?
  3. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  4. ルーブ・ゴールドバーグ反応 その1
  5. 食べず嫌いを直し始めた酵素たち。食べさせれば分かる酵素の可能性!…
  6. 結合をアリーヴェデルチ! Agarozizanol Bの全合成
  7. セブンシスターズについて② ~世を統べる資源会社~
  8. 【書籍】りょうしりきがく for babies

注目情報

ピックアップ記事

  1. 計算化学:基底関数って何?
  2. 電子雲三次元ガラス彫刻NEBULAが凄い!
  3. アンリ・カガン Henri B. Kagan
  4. CEMS Topical Meeting Online 機能性材料の励起状態化学
  5. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、ここに集結!」
  6. なぜあの研究室の成果は一流誌ばかりに掲載されるのか【考察】
  7. 超分子ポリマーを精密につくる
  8. キラルオキサゾリジノン
  9. 第105回―「低配位有機金属錯体を用いる触媒化学」Andrew Weller教授
  10. ローゼンムント・フォンブラウン反応 Rosenmund-von Braun Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP