[スポンサーリンク]

化学者のつぶやき

ビタミンと金属錯体から合成した人工の酵素

[スポンサーリンク]

プラチナPtの他、ロジウムRhルテニウムRuパラジウムPdイリジウムIrオスミウムOs。これら白金族元素に分類される金属は、有機化学合成の分野では触媒材料として、活躍が広く知られています。 しかし、生き物が環境中に希少なこれら金属元素を何かに使うといった報告は、まったく知られていません。

今まで出会わなかったものが出会うとどうなるのか、可能性はまだまだ残されていることでしょう。白金族元素を使った天然には類がない人工酵素を創成し反応を制御しようという試みが、新たに注目を集めています。触媒中心を構築する決め手は、ビタミンの1種、ビオチン(biotin)にあり。

天然に存在する酵素タンパク質が持つ触媒作用を手助けする分子を、補因子(cofactor)と言います。金属イオンの有名どころだと、Fe  Cu亜鉛ZnマンガンMn。すべての生き物に共通するわけではありませんが、バナジウムVコバルトCoニッケルNiもありますね。もう少し構造が複雑なものだと、光合成色素のクロロフィルで言うところの、フェオフィチンマグネシウムMgのように、有機小分子に金属イオンが組み合わさったものもあります。

生化学反応では決して登場しませんが、一方、有機合成の分野ではロジウムRhやルテニウムRuといった白金族元素は触媒材料としておなじみです。例えば、野依良治氏がノーベル化学賞に輝いた不斉触媒のBINAP2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; バイナップ)あたりで、ロジウムやルテニウムが大活躍していることは、よく知られたところでしょう。

こういった希少な白金族元素を、土壌や食料から栄養分として、生き物が安定して手に入れることは、きっと難しかったのでしょう。酵素と白金族元素。生物進化の壁にはばまれて、今まで交わることのなかったふたつが、フラスコの中で出会うとき[1]、物語ははじまります。

 

ケトンからアルデヒドへの不斉還元

ビオチンはビタミンとしての機能とは別に、アビジンと呼ばれるタンパク質と直接に相互作用する性質[2]があります。その親和能力は、抗原抗体反応を優に超える強さです。このビオチンを誘導体にして金属錯体をつなげられるように構造を改変します。そうすると、ビオチンがアビジンとくっつくことで、金属錯体がタンパク質の特定の位置に固定できるようになります[1]。そうして上手くやれば、タンパク質のへこみに触媒能力のある金属錯体がはまって、立体障害や、付近のアミノ酸側鎖からの寄与で、反応が選択的に進むのではということは、長年の間、模索されてきました。

栄養学分野ではビタミンHとかビタミンB7とも呼ばれるビオチンの構造式

栄養学分野ではビタミンHとかビタミンB7とも呼ばれるビオチンの構造式

いくつか報告がありますが、つい最近まで知られていた活用例[3],[4]はこれ。ケトンを還元してアルコールにします。

GREEN201212biotin2b

置換基の大小に応じて、ヒドロキシ基のどちらの立体化学が優先されるか決定される不斉反応です。触媒は、ロジウム錯体のこちら。

ビオチンで固定され塩化物イオンが外れた部分でもタンパク質アミノ酸側鎖と相互作用

ビオチンで固定され塩化物イオンが外れた部分でもタンパク質アミノ酸側鎖と相互作用

えっ何?「白金族元素を使わなくても同じ反応がかの有名なパン酵母還元ミッドランド還元できるだろ」って?…確かにそうですね。

 

C-H活性化からの環構築

では、もうちょっとフクザツな反応を。炭素間結合を生成しながら、6員環を新たに構築するこちら[6]はいかがでしょう。

GREEN201212biotin3b

ピバロイル基((CH3)3CCO-; Piv-)で保護しているところが、反応が回る決め手のひとつ[5]なのですが、それだけでは立体選択になりません。反応機構[5]を考えると、そのままではどうあがいても(不斉配位子を新たに開発しない限り[8])不可能なはず[6]。しかし、ビオチンとアビジンからなるシステムでは可能になってしまいます。触媒は、ルテニウム錯体のこちら。

ビオチンで固定され塩化物イオンが外れた部分でもタンパク質アミノ酸側鎖と相互作用

「ほうほう 風変わりな方法論ですな」と思っていたら、2012年『サイエンス』[6]だけではなく、2012年『ネイチャーケミストリー』[7]にも、今度は白金族元素でイリジウムIr錯体を使い別の反応で報告が(まだオンライン先行公開状態ですけど)。興味あるかたはこちらもご確認ください。

 

参考論文

  1. “Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety.” Wilson ME et al. J. Am. Chem. Soc. 1978 DOI: 10.1021/ja00469a064
  2. “Structural origins of high-affinity biotin binding to streptavidin.” Weber PC et al. Science 1989 DOI: 10.1126/science.2911722
  3. “Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.” Letondor C et al. Proc. Natl. Acad. Sci. 2005 DOI: 10.1073/pnas.0409684102
  4. “Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: Fine tuning the selectivity by saturation mutagenesis of the host protein.” Lentondor C et al. J. Am. Chem. Soc. 2006 DOI: 10.1021/ja061580o
  5. “Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: Improved reactivity and mechanistic studies.” Guimond N et al. J. Am. Chem. Soc. 2011 DOI: 10.1021/ja201143v
  6. “Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.”  Hyster TK et al. Science 2012 DOI: 10.1126/science.1226132
  7. “Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes.” Kohler V etal. Nature Chemistry 2012 DOI: 10.1038/nchem.1498
  8. “Chiral Cyclopentadienyl Ligands as Stereocontrolling Element in Asymmetric C–H Functionalization.” Ye B et al. Science 2012 DOI: 10.1126/science.1226938

 

関連書籍

[amazonjs asin=”4274131998″ locale=”JP” title=”わかりやすいからだとビタミンの知識”][amazonjs asin=”4532167728″ locale=”JP” title=”事実は真実の敵なり―私の履歴書”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成
  2. 分子構造を 3D で観察しよう (1)
  3. 秋の味覚「ぎんなん」に含まれる化合物
  4. 史上最強の塩基が合成される
  5. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  6. 世界最高の耐久性を示すプロパン脱水素触媒
  7. 結合をアリーヴェデルチ! Agarozizanol Bの全合成
  8. 果たして作ったモデルはどのくらいよいのだろうか【化学徒の機械学習…

注目情報

ピックアップ記事

  1. 1st Maruoka Conference on the Frontier of Organic Synthesis and Catalysis
  2. 結晶構造データは論文か?CSD Communicationsの公開
  3. クリストファー・ウォルシュ Christopher Walsh
  4. 傷んだ髪にタウリン…東工大などの研究で修復作用判明
  5. 紅麹問題に進展。混入物質を「プベルル酸」と特定か!?
  6. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  7. ボロントリフルオリド – エチルエーテル コンプレックス : Boron Trifluoride – Ethyl Ether Complex
  8. ChemSketchで書く簡単化学レポート
  9. エピスルフィド合成 Episulfide Synthesis
  10. 有機化合物のスペクトルによる同定法―MS,IR,NMRの併用 (第7版)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP